Vitamin D and Stress Fractures in Sport: Preventive and Therapeutic Measures—A Narrative Review (2024)

1. Bennell K., Matheson G., Meeuwisse W., Brukner P. Risk factors for stress fractures. Sports Med. 1999;28:91–122. doi:10.2165/00007256-199928020-00004. [PubMed] [CrossRef] [Google Scholar]

2. Kiel J., Kaiser K. Stress Reaction and Fractures. StatPearls Publishing; Treasure Island, FL, USA: 2020. [PubMed] [Google Scholar]

3. Shapiro M., Zubkov K., Landau R. Diagnosis of Stress fractures in military trainees: A large-scale cohort. BMJ Mil. Health. 2020;2020:001406. doi:10.1136/bmjmilitary-2020-001406. [PubMed] [CrossRef] [Google Scholar]

4. Wentz L., Liu P.-Y., Haymes E., Ilich J.Z. Females have a greater incidence of stress fractures than males in both military and athletic populations: A systemic review. Mil. Med. 2011;176:420–430. doi:10.7205/MILMED-D-10-00322. [PubMed] [CrossRef] [Google Scholar]

5. Fredericson M., Jennings F., Beaulieu C., Matheson G.O. Stress fractures in athletes. Top. Magn. Reson. Imaging. 2006;17:309–325. doi:10.1097/RMR.0b013e3180421c8c. [PubMed] [CrossRef] [Google Scholar]

6. Lawley R., Syrop I.P., Fredericson M. Vitamin D for improved bone health and prevention of stress fractures: A review of the literature. Curr. Sports Med. Rep. 2020;19:202–208. doi:10.1249/JSR.0000000000000718. [PubMed] [CrossRef] [Google Scholar]

7. Davey T., Lanham-New S.A., Shaw A.M., Hale B., Cobley R., Berry J.L., Roch M., Allsopp A.J., Fallowfield J.L. Low serum 25-hydroxyvitamin D is associated with increased risk of stress fracture during Royal Marine recruit training. Osteoporos. Int. 2015;27:171–179. doi:10.1007/s00198-015-3228-5. [PubMed] [CrossRef] [Google Scholar]

8. Milgrom C., Giladi M., Stein M., Kashtan H., Margulies J., Chisin R., Steinberg R., Aharonson Z. Stress fractures in military recruits. A prospective study showing an unusually high incidence. J. Bone Jt. Surg. Br. Vol. 1985:732–735. doi:10.1302/0301-620X.67B5.4055871. [PubMed] [CrossRef] [Google Scholar]

9. Ruohola J.-P., Laaksi I., Ylikomi T., Haataja R., Mattila V.M., Sahi T., Tuohimaa P., Pihlajamäki H. Association between serum 25(OH)D concentrations and bone stress fractures in Finnish young men. J. Bone Min. Res. 2006;21:1483–1488. doi:10.1359/jbmr.060607. [PubMed] [CrossRef] [Google Scholar]

10. Richards T., Wright C. British Army recruits with low serum vitamin D take longer to recover from stress fractures. J. R. Army Med. Corps. 2018;2018:000983. doi:10.1136/jramc-2018-000983. [PubMed] [CrossRef] [Google Scholar]

11. Moreira C.A., Bilezikian J.P. Stress fractures: Concepts and therapeutics. J. Clin. Endocrinol. Metab. 2016;102:525–534. doi:10.1210/jc.2016-2720. [PubMed] [CrossRef] [Google Scholar]

12. Watkins C.M., Lively M.W. A review of vitamin D and its effects on athletes. Physician Sportsmed. 2012;40:26–31. doi:10.3810/psm.2012.09.1977. [PubMed] [CrossRef] [Google Scholar]

13. Patel D.S., Roth M., Kapil N. Stress fractures: Diagnosis, treatment, and prevention. Am. Fam. Physician. 2011;83:39–46. [PubMed] [Google Scholar]

14. Knapik J.J., Reynolds K., Hoedebecke K.L. Stress fractures: Etiology, epidemiology, diagnosis, treatment, and prevention. J. Spéc. Oper. Med. Peer Rev. J. SOF Med. Prof. 2017;17:120–130. [PubMed] [Google Scholar]

15. Tenforde A.S., Sayres L.C., Sainani K.L., Fredericson M. Association between serum 25(OH)D concentrations and bone stress fractures in Finnish young men. PmR. 2010;2:945–949. doi:10.1016/j.pmrj.2010.05.006. [PubMed] [CrossRef] [Google Scholar]

16. Sikora-Klak J. The effect of abnormal vitamin D levels in athletes. Perm. J. 2018;22:17–216. doi:10.7812/TPP/17-216. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

17. Neal S., Sykes J., Rigby M., Hess B. A review and clinical summary of vitamin D in regard to bone health and athletic performance. Physician Sportsmed. 2015;43:161–168. doi:10.1080/00913847.2015.1020248. [PubMed] [CrossRef] [Google Scholar]

18. Goolsby M.A., Boniquit N. Bone health in athletes. Sports Health A Multidiscip. Approach. 2017;9:108–117. doi:10.1177/1941738116677732. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

19. Książek A., Zagrodna A., Słowińska-Lisowska M. Vitamin D, skeletal muscle function and athletic performance in athletes—A narrative review. Nutrients. 2019;11:1800. doi:10.3390/nu11081800. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

20. Moran D.S., McClung J.P., Kohen T., Lieberman H.R. Vitamin D and physical performance. Sports Med. 2013;43:601–611. doi:10.1007/s40279-013-0036-y. [PubMed] [CrossRef] [Google Scholar]

21. Girgis C.M., Clifton-Bligh R.J., Turner N., Lau S.L., Gunton J.E. Effects of vitamin D in skeletal muscle: Falls, strength, athletic performance and insulin sensitivity. Clin. Endocrinol. 2014;80:169–181. doi:10.1111/cen.12368. [PubMed] [CrossRef] [Google Scholar]

22. Grant M.J., Booth A. A typology of reviews: An analysis of 14 review types and associated methodologies. Health Inf. Libr. J. 2009;26:91–108. doi:10.1111/j.1471-1842.2009.00848.x. [PubMed] [CrossRef] [Google Scholar]

23. Christakos S., Ajibade D.V., Dhawan P., Fechner A.J., Mady L.J. Vitamin D: Metabolism. Rheum. Dis. Clin. N. Am. 2012;38:1–11. doi:10.1016/j.rdc.2012.03.003. [PubMed] [CrossRef] [Google Scholar]

24. Wilson-Barnes S.L., Hunt J.E.A., Lanham-New S.A., Manders R.J.F. Effects of vitamin D on health outcomes and sporting performance: Implications for elite and recreational athletes. Nutr. Bull. 2020;45:11–24. doi:10.1111/nbu.12413. [CrossRef] [Google Scholar]

25. Jones G. Metabolism and biomarkers of vitamin D. Scand. J. Clin. Lab. Investig. Suppl. 2012;243:7–13. [PubMed] [Google Scholar]

26. Wang T.-T., Tavera-Mendoza L.E., Mader S., White J.H., Laperriere D., Libby E., MacLeod N.B., Nagai Y., Bourdeau V., Konstorum A., et al. Large-scale in silico and microarray-based identification of direct 1,25-Dihydroxyvitamin D3 target genes. Mol. Endocrinol. 2005;19:2685–2695. doi:10.1210/me.2005-0106. [PubMed] [CrossRef] [Google Scholar]

27. Larson-Meyer D.E., Willis K.S., Smith D.T., Broughton K.S. Vitamin D status and biomarkers of inflammation in runners. Open Access J. Sports Med. 2012;3:35–42. doi:10.2147/OAJSM.S31022. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

28. Ρlvarez-Díaz S., Valle N., García J.M., Peña C., Freije J.M.P., Quesada V., Astudillo A., Bonilla F., López-Otín C., Muñoz A. Cystatin D is a candidate tumor suppressor gene induced by vitamin D in human colon cancer cells. J. Clin. Investig. 2009;119:2343–2358. doi:10.1172/jci37205. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

29. Dhesi J.K., Jackson S.H.D., Bearne L.M., Moniz C., Hurley M.V., Swift C.G., Allain T.J. Vitamin D supplementation improves neuromuscular function in older people who fall. Age Ageing. 2004;33:589–595. doi:10.1093/ageing/afh209. [PubMed] [CrossRef] [Google Scholar]

30. Vanga S.R., Good M., Howard P.A., Vacek J.L. Role of vitamin D in cardiovascular health. Am. J. Cardiol. 2010;106:798–805. doi:10.1016/j.amjcard.2010.04.042. [PubMed] [CrossRef] [Google Scholar]

31. Sukumar D., Shapses S., Schneider S. Vitamin D supplementation during short-term caloric restriction in healthy overweight/obese older women: Effect on glycemic indices and serum osteocalcin levels. Mol. Cell. Endocrinol. 2015;410:73–77. doi:10.1016/j.mce.2015.01.002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

32. Schoenmakers I., Francis R.M., McColl E., Chadwick T., Goldberg G.R., Harle C., Yarnall A., Wilkinson J., Parker J., Prentice A., et al. Vitamin D supplementation in older people (VDOP): Study protocol for a randomised controlled intervention trial with monthly oral dosing with 12,000 IU, 24,000 IU or 48,000 IU of vitamin D3. Trials. 2013;14:299. doi:10.1186/1745-6215-14-299. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

33. Close G.L., Leckey J., Patterson M., Bradley W., Owens D.J., Fraser W.D., Morton J.P. The effects of vitamin D3supplementation on serum total 25[OH]D concentration and physical performance: A randomised dose–response study. Br. J. Sports Med. 2013;47:692–696. doi:10.1136/bjsports-2012-091735. [PubMed] [CrossRef] [Google Scholar]

34. Walrand S. Effect of vitamin D on skeletal muscle. Geriatr. Psychol. Neuropsychiatr. Viellissem*nt. 2016;14:127–134. doi:10.1684/pnv.2016.0599. [PubMed] [CrossRef] [Google Scholar]

35. Abrams G.D., Feldman D., Safran M.R. Effects of vitamin D on skeletal muscle and athletic performance. J. Am. Acad. Orthop. Surg. 2018;26:278–285. doi:10.5435/JAAOS-D-16-00464. [PubMed] [CrossRef] [Google Scholar]

36. Udowenko M., Trojian T. Vitamin D: Extent of deficiency, effect on muscle function, bone health, performance, and injury prevention. Connect. Med. 2010;74:477–480. [PubMed] [Google Scholar]

37. Bendik I., Friedel A., Roos F.F., Weber P., Eggersdorfer M. Vitamin D: A critical and essential micronutrient for human health. Front. Physiol. 2014;5:248. doi:10.3389/fphys.2014.00248. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

38. Holick M.F. Deficiency of sunlight and vitamin D. BMJ. 2008;336:1318–1319. doi:10.1136/bmj.39581.411424.80. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

39. Jastrzębska M., Kaczmarczyk M., Suárez A.D., Sánchez G.F.L., Jastrzębska J., Radziminski L., Jastrzebski Z. Iron, hematological parameters and blood plasma lipid profile in vitamin D supplemented and non-supplemented young soccer players subjected to high-intensity interval training. J. Nutr. Sci. Vitam. 2017;63:357–364. doi:10.3177/jnsv.63.357. [PubMed] [CrossRef] [Google Scholar]

40. Allison R.J., Close G.L., Farooq A., Riding N.R., Salah O., Hamilton B., Wilson M.G. Severely vitamin D-deficient athletes present smaller hearts than sufficient athletes. Eur. J. Prev. Cardiol. 2015;22:535–542. doi:10.1177/2047487313518473. [PubMed] [CrossRef] [Google Scholar]

41. Farrell S.W., Cleaver J.P., Willis B.L. Cardiorespiratory fitness, adiposity, and serum 25-dihydroxyvitamin D levels in men. Med. Sci. Sports Exerc. 2011;43:266–271. doi:10.1249/MSS.0b013e3181ed5ec6. [PubMed] [CrossRef] [Google Scholar]

42. Ha C.-D., Cho J.-K., Lee S.-H., Kang H.-S. Serum vitamin D, physical activity, and metabolic risk factors in Korean children. Med. Sci. Sports Exerc. 2013;45:102–108. doi:10.1249/MSS.0b013e31826c6956. [PubMed] [CrossRef] [Google Scholar]

43. Jastrzebski Z., Kortas J., Kaczor K., Antosiewicz J. Vitamin D supplementation causes a decrease in blood cholesterol in professional rowers. J. Nutr. Sci. Vitam. 2016;62:88–92. doi:10.3177/jnsv.62.88. [PubMed] [CrossRef] [Google Scholar]

44. Farrokhyar F., Tabasinejad R., Dao D., Peterson D., Ayeni O.R., Hadioonzadeh R., Bhandari M. Prevalence of vitamin D inadequacy in athletes: A systematic-review and meta-analysis. Sports Med. 2014;45:365–378. doi:10.1007/s40279-014-0267-6. [PubMed] [CrossRef] [Google Scholar]

45. Backx E.M.P., Tieland M., Maase K., Kies A.K., Mensink M., Van Loon L.J., De Groot L.C.P.G.M. The impact of 1-year vitamin D supplementation on vitamin D status in athletes: A dose–response study. Eur. J. Clin. Nutr. 2016;70:1009–1014. doi:10.1038/ejcn.2016.133. [PubMed] [CrossRef] [Google Scholar]

46. Cassity E.P., Redzic M., Teager C.R., Thomas D.T. The effect of body composition and BMI on 25(OH)D response in vitamin D-supplemented athletes. Eur. J. Sport Sci. 2015;16:773–779. doi:10.1080/17461391.2015.1125952. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

47. Härdi I., Reinhard S., Conzelmann M., Kressig R.W., Bridenbaugh S.A. Vitamin-D-status bei mitarbeitenden eines universitären Schweizer Geriatriespitals. Praxis. 2018;107:633–640. doi:10.1024/1661-8157/a003007. [PubMed] [CrossRef] [Google Scholar]

48. Tachi Y., Sakamoto Y., Iida K., Wang P.-L. Relation of bone mass to vitamin D receptor gene polymorphism and lifestyle factors in Japanese female college students. J. Hard Tissue Biol. 2018;27:281–286. doi:10.2485/jhtb.27.281. [CrossRef] [Google Scholar]

49. Sari D.K., Tala Z.Z., Lestari S., Hutagalung S.V., A Ganie R. Proceedings of the IOP Conference Series: Materials Science and Engineering. Volume 180. IOP Publishing; Bristol, UK: 2017. Low 25(OH)D serum may not reflect at risk skeletal health but not with body mass index in women; p. 12281. [Google Scholar]

50. Barcal J.N., Thomas J.T., Hollis B.W., Austin K.J., Alexander B.M., Larson-Meyer D.E. Vitamin D and weight cycling: Impact on injury, illness, and inflammation in collegiate wrestlers. Nutrients. 2016;8:775. doi:10.3390/nu8120775. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

51. Heller J.E., Thomas J.J., Hollis B.W., Larson-Meyer D.E. Relation between vitamin D status and body composition in collegiate athletes. Int. J. Sport Nutr. Exerc. Metab. 2015;25:128–135. doi:10.1123/ijsnem.2013-0250. [PubMed] [CrossRef] [Google Scholar]

52. Rosimus C. Case study: The effect of nutritional intervention on body composition and physical performance of a female squash player. Int. J. Sport Nutr. Exerc. Metab. 2018;28:279–283. doi:10.1123/ijsnem.2017-0069. [PubMed] [CrossRef] [Google Scholar]

53. Fitzgerald J.S., Peterson B.J., Wilson P.B., Rhodes G.S., Ingraham S.J. Vitamin D status is associated with adiposity in male ice hockey players. Med. Sci. Sports Exerc. 2015;47:655–661. doi:10.1249/MSS.0000000000000433. [PubMed] [CrossRef] [Google Scholar]

54. Ha C.-D., Han T.-K., Lee S.-H., Cho J.-K., Kang H.-S. Association between serum vitamin D status and metabolic syndrome in Korean young men. Med. Sci. Sports Exerc. 2014;46:513–519. doi:10.1249/MSS.0b013e3182a6834a. [PubMed] [CrossRef] [Google Scholar]

55. Angeline M.E., Gee A.O., Shindle M., Warren R.F., Rodeo S.A. The effects of vitamin D deficiency in athletes. Am. J. Sports Med. 2013;41:461–464. doi:10.1177/0363546513475787. [PubMed] [CrossRef] [Google Scholar]

56. Vlachopoulos D., Ubago-Guisado E., Barker A.R., Metcalf B.S., Fatouros I.G., Avloniti A., Knapp K.M., Moreno L.A., Williams C.A., Gracia-Marco L. Determinants of bone outcomes in adolescent athletes at baseline. Med. Sci. Sports Exerc. 2017;49:1389–1396. doi:10.1249/MSS.0000000000001233. [PubMed] [CrossRef] [Google Scholar]

57. Silk L.N., Greene D.A., Baker M.K., Jander C.B. The effect of calcium and vitamin D supplementation on bone health of male Jockeys. J. Sci. Med. Sport. 2017;20:225–229. doi:10.1016/j.jsams.2016.08.004. [PubMed] [CrossRef] [Google Scholar]

58. Keay N., Francis G., Hind K. Low energy availability assessed by a sport-specific questionnaire and clinical interview indicative of bone health, endocrine profile and cycling performance in competitive male cyclists. BMJ Open Sport Exerc. Med. 2018;4:e000424. doi:10.1136/bmjsem-2018-000424. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

59. Allison R.J., Farooq A., Cherif A., Hamilton B., Close G.L., Wilson M.G. Why don’t serum vitamin D concentrations associate with BMD by DXA? A case of being ‘bound’ to the wrong assay? Implications for vitamin D screening. Br. J. Sports Med. 2017;52:522–526. doi:10.1136/bjsports-2016-097130. [PubMed] [CrossRef] [Google Scholar]

60. Waldron-Lynch F., Murray B.F., Brady J.J., McKenna M.J., McGoldrick A., Warrington G., O’Loughlin G., Barragry J.M. High bone turnover in Irish professional jockeys. Osteoporos. Int. 2009;21:521–525. doi:10.1007/s00198-009-0887-0. [PubMed] [CrossRef] [Google Scholar]

61. Lewis R.M., Redzic M., Thomas D.T. The effects of season-long vitamin D supplementation on collegiate swimmers and divers. Int. J. Sport Nutr. Exerc. Metab. 2013;23:431–440. doi:10.1123/ijsnem.23.5.431. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

62. Bügel S. Vitamin K and bone health in adult humans. Vitam. Horm. 2008;78:393–416. doi:10.1016/s0083-6729(07)00016-7. [PubMed] [CrossRef] [Google Scholar]

63. Kidd P.M. Vitamins D and K as pleiotropic nutrients: Clinical importance to the skeletal and cardiovascular systems and preliminary evidence for synergy. Altern. Med. Rev. A J. Clin. 2010;15:199–222. [PubMed] [Google Scholar]

64. Gundberg C.M., Lian J.B., Booth S.L. Vitamin k-dependent carboxylation of osteocalcin: Friend or foe? Adv. Nutr. 2012;3:149–157. doi:10.3945/an.112.001834. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

65. Mizuguchi M., Fujisawa R., Nara M., Nitta K., Kawano K. Fourier-transform infrared spectroscopic study of ca2+-binding to osteocalcin. Calcif. Tissue Int. 2001;69:337–342. doi:10.1007/s002230010042. [PubMed] [CrossRef] [Google Scholar]

66. Miller T.L., Best T.M. Taking a holistic approach to managing difficult stress fractures. J. Orthop. Surg. Res. 2016;11:98. doi:10.1186/s13018-016-0431-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

67. LaFleur M., Serra J.-M., Nguyen S., Depiesse F., Edouard P. Vitamine D et sports. J. De Traumatol. Du Sport. 2016;33:110–113. doi:10.1016/j.jts.2015.12.006. [CrossRef] [Google Scholar]

68. Shimasaki Y., Nagao M., Yoshimura M., Miyamori T., Aoba Y., f*ckushi N., Saita Y., Ikeda H., Kim S.-G., Nozawa M., et al. Evaluating the risk of a fifth metatarsal stress fracture by measuring the serum 25-hydroxyvitamin D levels. Foot Ankle Int. 2016;37:307–311. doi:10.1177/1071100715617042. [PubMed] [CrossRef] [Google Scholar]

69. Feskanich D., Weber P., Willett W.C., Rockett H., Booth S.L., Colditz A.G. Vitamin K intake and hip fractures in women: A prospective study. Am. J. Clin. Nutr. 1999;69:74–79. doi:10.1093/ajcn/69.1.74. [PubMed] [CrossRef] [Google Scholar]

70. Masterjohn C. Vitamin D toxicity redefined: Vitamin K and the molecular mechanism. Med. Hypotheses. 2007;68:1026–1034. doi:10.1016/j.mehy.2006.09.051. [PubMed] [CrossRef] [Google Scholar]

71. El Asmar M.S., Naoum J.J., Arbid E.J. Vitamin k dependent proteins and the role of vitamin K2 in the modulation of vascular calcification: A review. Oman Med. J. 2014;29:172–177. doi:10.5001/omj.2014.44. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

72. Williams K., Askew C., Mazoue C., Guy J., Torres-McGehee T.M., Iii J.B.J. Vitamin D3 supplementation and stress fractures in high-risk collegiate athletes–A pilot study. Orthop. Res. Rev. 2020;12:9–17. doi:10.2147/ORR.S233387. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

73. Teixeira P., Santos A.C., Casalta-Lopes J., Almeida M., Loureiro J., Ermida V., Caldas J., Fontes-Ribeiro C. Prevalence of vitamin D deficiency amongst soccer athletes and effects of 8 weeks supplementation. J. Sports Med. Phys. Fit. 2019;59:s0022–s4707. doi:10.23736/S0022-4707.18.08551-1. [PubMed] [CrossRef] [Google Scholar]

74. Butscheidt S., Rolvien T., Ueblacker P., Amling M., Barvencik F. Bedeutung von vitamin D im sport: Reduziert ein mangel die leistungsfähigkeit? Sportverletz. Sportschaden. 2017;31:37–44. doi:10.1055/s-0042-121748. [PubMed] [CrossRef] [Google Scholar]

75. Grieshober J.A., Mehran N., Photopolous C., Fishman M., Lombardo S.J., Kharrazi F.D. Vitamin D insufficiency among professional basketball players: A relationship to fracture risk and athletic performance. Orthop. J. Sports Med. 2018;6 doi:10.1177/2325967118774329. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

76. Knechtle B., Nikolaidis P.T., Lutz B., Rosemann T., Baerlocher C.B. Pathologic fracture of the thoracic spine in a male master ultra-marathoner due to the combination of a vertebral hemangioma and osteopenia. Medicina. 2017;53:131–137. doi:10.1016/j.medici.2017.02.003. [PubMed] [CrossRef] [Google Scholar]

77. Silva M.-R.G., Silva H.-H. Comparison of body composition and nutrients’ deficiencies between Portuguese rink-hockey players. Eur. J. Nucl. Med. Mol. Imaging. 2016;176:41–50. doi:10.1007/s00431-016-2803-x. [PubMed] [CrossRef] [Google Scholar]

78. Saxena A., Fullem B., Gerdesmeyer L. Treatment of medial tibial stress syndrome with radial soundwave therapy in elite athletes: Current evidence, report on two cases, and proposed treatment regimen. J. Foot Ankle Surg. 2017;56:985–989. doi:10.1053/j.jfas.2017.06.013. [PubMed] [CrossRef] [Google Scholar]

79. Feldman J.J., Bowman E.N., Phillips B.B., Weinlein J.C. Tibial stress fractures in athletes. Orthop. Clin. N. Am. 2016;47:733–741. doi:10.1016/j.ocl.2016.05.015. [PubMed] [CrossRef] [Google Scholar]

80. Brennan M., O’Shea P.M., O’Keeffe S.T., Mulkerrin E.C. Spontaneous insufficiency fractures. J. Nutr. Health Aging. 2019;23:758–760. doi:10.1007/s12603-019-1234-6. [PubMed] [CrossRef] [Google Scholar]

81. Lappe J., Cullen D., Haynatzki G., Recker R., Ahlf R., Thompson K. Calcium and vitamin D supplementation decreases incidence of stress fractures in female navy recruits. J. Bone Min. Res. 2008;23:741–749. doi:10.1359/jbmr.080102. [PubMed] [CrossRef] [Google Scholar]

82. Miller J.R., Dunn K.W., Ciliberti L.J., Patel R.D., Swanson B.A. Association of vitamin D with stress fractures: A retrospective cohort study. J. Foot Ankle Surg. 2016;55:117–120. doi:10.1053/j.jfas.2015.08.002. [PubMed] [CrossRef] [Google Scholar]

83. Armstrong R.A., Davey T., Allsopp A.J., Lanham-New S.A., Oduoza U., Cooper J.A., Montgomery H.E., Fallowfield J.L. Low serum 25-hydroxyvitamin D status in the pathogenesis of stress fractures in military personnel: An evidenced link to support injury risk management. PLoS ONE. 2020;15:e0229638. doi:10.1371/journal.pone.0229638. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

84. Griffin K.L., Knight K.B., Bass M.A., Valliant M.W. Predisposing risk factors for stress fractures in collegiate cross-country runners. J. Strength Cond. Res. 2021;35:227–232. doi:10.1519/JSC.0000000000002408. [PubMed] [CrossRef] [Google Scholar]

85. Patel D.R. Stress fractures: Diagnosis and management in the primary care setting. Pediatr. Clin. N. Am. 2010;57:819–827. doi:10.1016/j.pcl.2010.03.004. [PubMed] [CrossRef] [Google Scholar]

86. Olesen U.K., Lauritzen J.B. Stress fracture in female athlete runner carrying weights. Ugeskr. Laeger. 2008;170:3138–3139. [PubMed] [Google Scholar]

87. Lodge C.J., Sha S., Yousef A.S.E., MacEachern C. Stress fractures in the young adult hip. Orthop. Trauma. 2020;34:95–100. doi:10.1016/j.mporth.2020.01.006. [CrossRef] [Google Scholar]

88. Greaser M.C. Foot and ankle stress fractures in athletes. Orthop. Clin. N. Am. 2016;47:809–822. doi:10.1016/j.ocl.2016.05.016. [PubMed] [CrossRef] [Google Scholar]

89. Iwamoto J., Sato Y., Takeda T., Matsumoto H. Analysis of stress fractures in athletes based on our clinical experience. World J. Orthop. 2011;2:7–12. doi:10.5312/wjo.v2.i1.7. [PMC free article] [PubMed] [CrossRef] [Google Scholar] Retracted

90. Harb Z., Malhi A. Bilateral simultaneous avulsion fractures of the proximal tibia in a 14-year-old athlete with vitamin-D deficiency. Case Rep. Orthop. 2015;2015:1–3. doi:10.1155/2015/783046. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

91. Pepper M., Akuthota V., Mccarty E.C. The pathophysiology of stress fractures. Clin. Sports Med. 2006;25:1–16. doi:10.1016/j.csm.2005.08.010. [PubMed] [CrossRef] [Google Scholar]

92. Philipson M.R., Parker P.J. Stress fractures. Orthop. Trauma. 2009;23:137–143. doi:10.1016/j.mporth.2009.01.017. [CrossRef] [Google Scholar]

93. Hoch A.Z., Pepper M., Akuthota V. Stress fractures and knee injuries in runners. Phys. Med. Rehabil. Clin. N. Am. 2005;16:749–777. doi:10.1016/j.pmr.2005.02.008. [PubMed] [CrossRef] [Google Scholar]

94. Belkin S.C. Stress fractures in athletes. Orthop. Clin. N. Am. 1980;11:735–742. doi:10.1016/S0030-5898(20)31434-6. [PubMed] [CrossRef] [Google Scholar]

95. Devas M.B. Stress fractures in athletes. Proc. R. Soc. Med. 1970;19:34–38. [PMC free article] [PubMed] [Google Scholar]

96. Tenforde A.S., Kraus E., Fredericson M. Bone stress injuries in runners. Phys. Med. Rehabil. Clin. N. Am. 2016;27:139–149. doi:10.1016/j.pmr.2015.08.008. [PubMed] [CrossRef] [Google Scholar]

97. Song S.H., Koo J.H. Bone stress injuries in runners: A review for raising interest in stress fractures in Korea. J. Korean Med. Sci. 2020;35:e38. doi:10.3346/jkms.2020.35.e38. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

98. Hulme A., Nielsen R.O., Timpka T., Verhagen E., Finch C. Risk and protective factors for middle-and long-distance running-related injury. Sports Med. 2017;47:869–886. doi:10.1007/s40279-016-0636-4. [PubMed] [CrossRef] [Google Scholar]

99. Markey K.L. Stress fractures. Clin. Sports Med. 1987;6:405–425. doi:10.1016/S0278-5919(20)31038-3. [PubMed] [CrossRef] [Google Scholar]

100. Hershman E.B., Mailly T. Stress fractures. Clin. Sports Med. 1990;9:183–214. doi:10.1016/S0278-5919(20)30763-8. [PubMed] [CrossRef] [Google Scholar]

101. Nattiv A., Armsey T.D. Stress injury to bone in the female athlete. Clin. Sports Med. 1997;16:197–224. doi:10.1016/S0278-5919(05)70017-X. [PubMed] [CrossRef] [Google Scholar]

102. Pegrum J., Dixit V., Padhiar N., Nugent I. The pathophysiology, diagnosis, and management of foot stress fractures. Physician Sportsmed. 2014;42:87–99. doi:10.3810/psm.2014.11.2095. [PubMed] [CrossRef] [Google Scholar]

103. Neidel P., Wolfram P., Hotfiel T., Engelhardt M., Koch R., Lee G., Zwingenberger S., Lee K. Cross-sectional investigation of stress fractures in German elite triathletes. Sports. 2019;7:88. doi:10.3390/sports7040088. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

104. Sterling J.C., Edelstein D.W., Calvo R.D., Webb R. Stress fractures in the athlete. Sports Med. 1992;14:336–346. doi:10.2165/00007256-199214050-00005. [PubMed] [CrossRef] [Google Scholar]

105. Daffner R.H., Pavlov H. Stress fractures: Current concepts. Am. J. Roentgenol. 1992;159:245–252. doi:10.2214/ajr.159.2.1632335. [PubMed] [CrossRef] [Google Scholar]

106. Daffner R.H., Martinez S., Gehweiler J.A. Stress fractures in runners. JAMA. 1982;247:1039–1041. doi:10.1001/jama.1982.03320320067039. [PubMed] [CrossRef] [Google Scholar]

107. Warden S.J., Davis I.S., Fredericson M. Management and prevention of bone stress injuries in long-distance runners. J. Orthop. Sports Phys. 2014;44:749–765. doi:10.2519/jospt.2014.5334. [PubMed] [CrossRef] [Google Scholar]

108. Greaney R.B., Gerber F.H., Laughlin R.L., Kmet J.P., Metz C.D., Kilcheski T.S., Rao B.R., Silverman E.D. Distribution and natural history of stress fractures in U.S. Marine recruits. Radiology. 1983;146:339–346. doi:10.1148/radiology.146.2.6217486. [PubMed] [CrossRef] [Google Scholar]

109. Roub L.W., Gumerman L.W., Hanley E.N., Clark M.W., Goodman M., Herbert D.L. Bone stress: A radionuclide imaging perspective. Radiology. 1979;132:431–438. doi:10.1148/132.2.431. [PubMed] [CrossRef] [Google Scholar]

110. Jacobs J.M., Cameron K.L., Bojescul J.A. Lower extremity stress fractures in the military. Clin. Sports Med. 2014;33:591–613. doi:10.1016/j.csm.2014.06.002. [PubMed] [CrossRef] [Google Scholar]

111. Matheson G., Clement D., McKenzie D., Taunton J., Lloyd-Smith D., MacIntyre J. Stress fractures in athletes. Am. J. Sports Med. 1987;15:46–58. doi:10.1177/036354658701500107. [PubMed] [CrossRef] [Google Scholar]

112. Floyd W.N., Butler J.E., Kim E.E., Clanton T., Pjura G. Roentgenologic diagnosis of stress fractures and stress reactions. South Med. J. 1987;80:433–439. doi:10.1097/00007611-198704000-00007. [PubMed] [CrossRef] [Google Scholar]

113. Lynch T.S., Patel R.M., Amin N.H., Parker R.D. Stress Fractures in Athletes. Springer International Publishing; Berlin/Heidelberg, Germany: 2014. Stress fractures of the pelvis; pp. 101–110. [Google Scholar]

114. Heincelman C., Brown S., England E., Mehta K., Wissman R.D. Stress injury of the rib in a swimmer. Skelet. Radiol. 2014;43:1297–1299. doi:10.1007/s00256-014-1863-0. [PubMed] [CrossRef] [Google Scholar]

115. Maroon J.C., Mathyssek C.M., Bost J.W., Amos A., Winkelman R., Yates A.P., Duca M.A., Norwig J.A. Vitamin D profile in national football league players. Am. J. Sports Med. 2015;43:1241–1245. doi:10.1177/0363546514567297. [PubMed] [CrossRef] [Google Scholar]

116. Rizzone K.H., Ackerman K.E., Roos K.G., Dompier T.P., Kerr Z.Y. The epidemiology of stress fractures in collegiate student-athletes, 2004–2005 through 2013–2014 academic years. J. Athl. Train. 2017;52:966–975. doi:10.4085/1062-6050-52.8.01. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

117. Scofield K.L., Hecht S. Bone health in endurance athletes. Curr. Sports Med. Rep. 2012;11:328–334. doi:10.1249/JSR.0b013e3182779193. [PubMed] [CrossRef] [Google Scholar]

118. McDonnell L.K., Hume P.A., Nolte V. Rib Stress fractures among rowers. Sports Med. 2011;41:883–901. doi:10.2165/11593170-000000000-00000. [PubMed] [CrossRef] [Google Scholar]

119. Hossain M., Clutton J., Ridgewell M., Lyons K., Perera A. Stress fractures of the foot. Clin. Sports Med. 2015;34:769–790. doi:10.1016/j.csm.2015.06.011. [PubMed] [CrossRef] [Google Scholar]

120. DeFranco M.J., Recht M., Schils J., Parker R.D. Stress fractures of the femur in athletes. Clin. Sports Med. 2006;25:89–103. doi:10.1016/j.csm.2005.08.003. [PubMed] [CrossRef] [Google Scholar]

121. Yousaf S., Sugand K., Raza M., Ramesh P. Simultaneous bilateral stress fractures in a homemaker. J. Am. Podiatr. Med. Assoc. 2014;104:518–521. doi:10.7547/0003-0538-104.5.518. [PubMed] [CrossRef] [Google Scholar]

122. Narang R.K., Reid I. Osteomalacia in subtropical Auckland. BMJ Case Rep. 2019;12:e229657. doi:10.1136/bcr-2019-229657. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

123. Abbott A., Bird M.L., Wild E., Brown S.M., Stewart G., Mulcahey M.K. Part I: Epidemiology and risk factors for stress fractures in female athletes. Physician Sportsmed. 2020;48:17–24. doi:10.1080/00913847.2019.1632158. [PubMed] [CrossRef] [Google Scholar]

124. Smith R., Moghal M., Newton J.L., Jones N., Teh J. Negative magnetic resonance imaging in three cases of anterior tibial cortex stress fractures. Skelet. Radiol. 2017;46:1775–1782. doi:10.1007/s00256-017-2773-8. [PubMed] [CrossRef] [Google Scholar]

125. Ficek K., Cyganik P., Rajca J., Racut A., Kiełtyka A., Grzywocz J., Hajduk G. Stress fractures in uncommon location: Six case reports and review of the literature. World J. Clin. Cases. 2020;8:4135–4150. doi:10.12998/wjcc.v8.i18.4135. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

126. Okike K., Moritz B.E. Minimally invasive screw fixation of inferior pubic ramus stress fracture nonunion in a runner. Jbjs Case Connect. 2016;6:e26–e266. doi:10.2106/JBJS.CC.O.00101. [PubMed] [CrossRef] [Google Scholar]

127. Moo I.H., Lee Y.H.D., Lim K.K., Mehta K.V. Bilateral femoral neck stress fractures in military recruits with unilateral hip pain. J. R. Army Med. Corps. 2015;162:387–390. doi:10.1136/jramc-2014-000401. [PubMed] [CrossRef] [Google Scholar]

128. Scully W.F., Rumley M.J.C., Caskey P.M. Bilateral patellar stress fractures in a skeletally immature athlete. Jbjs Case Connect. 2019;9:e0047. doi:10.2106/JBJS.CC.19.00047. [PubMed] [CrossRef] [Google Scholar]

129. Knechtle B., Wengler E., Nikolaidis P.T. Bilateral patellar cyst: A case report with an Ironman triathlete. J. Sports Med. Phys. Fit. 2018;58:758–759. [PubMed] [Google Scholar]

130. Godoy I.R.B., Malavolta E.A., Lundberg J.S., Da Silva J.J., Skaf A. Humeral stress fracture in a female CrossFit athlete: A case report. BMC Musculoskelet. Disord. 2019;20:150. doi:10.1186/s12891-019-2532-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

131. Manocha R.H.K., Weidner J. Ulnar stress reaction in an axillary crutch user. BMJ Case Rep. 2020;13:e236219. doi:10.1136/bcr-2020-236219. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

132. Vajapey S., Matic G., Hartz C., Miller T.L. Sacral stress fractures: A rare but curable cause of back pain in athletes. Sports Health A Multidiscip. Approach. 2019;11:446–452. doi:10.1177/1941738119854763. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

133. Do A.C., Holtzman G., Ziegler C., Prather H. Sacral pedicle stress fracture in an adolescent competitive basketball and track and field athlete with a prior femoral physeal injury: A case report. PmR. 2019;11:657–660. doi:10.1002/pmrj.12119. [PubMed] [CrossRef] [Google Scholar]

134. Chung J.S., Sabatino M.J., Fletcher A.L., Ellis H.B. Concurrent bilateral anterior tibial stress fractures and vitamin D deficiency in an adolescent female athlete: Treatment with early surgical intervention. Front. Pediatr. 2019;7 doi:10.3389/fped.2019.00397. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

135. Loh W.J., Hughes L., Chua D.T.C., Gani L. A case report of mixed osteomalacia and low bone density from vitamin D deficiency as a cause of bilateral tibial stress fractures in a young male military recruit from Singapore. Case Rep. Endocrinol. 2020;2020:9519621. doi:10.1155/2020/9519621. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

136. f*ckui K., Kaneuji A., Hirata H., Tsujioka J.-I., Shioya A., Yamada S., Kawahara N. Bilateral spontaneous simultaneous femoral neck occult fracture in a middle-aged man due to osteoporosis and vitamin D deficiency osteomalacia: A case report and literature review. Int. J. Surg. Case Rep. 2019;60:358–362. doi:10.1016/j.ijscr.2019.06.058. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

137. House S., Loud K., Shubkin C. Female athlete triad for the primary care pediatrician. Curr. Opin. Pediatr. 2013;25:755–761. doi:10.1097/MOP.0000000000000033. [PubMed] [CrossRef] [Google Scholar]

138. Harris J.D., Varner K.E. Stress Fractures in Athletes. Springer International Publishing; Berlin/Heidelberg, Germany: 2014. Stress fractures of the Tibia; pp. 137–147. [Google Scholar]

139. Macknight J.M. Osteopenia and osteoporosis in female athletes. Clin. Sports Med. 2017;36:687–702. doi:10.1016/j.csm.2017.05.006. [PubMed] [CrossRef] [Google Scholar]

140. Bouvard M., Duclos M. Stress fractures in the female athlete. J. Traumatol. Du Sport. 2003;20:230–235. [Google Scholar]

141. Miyamoto T., Oguma Y., Matsumoto H., Matsumoto M., Nakamura M., Sato Y., Kobayashi T., Ito E., Tani M., Miyamoto K., et al. Elevated creatine kinase and lactic acid dehydrogenase and decreased osteocalcin and uncarboxylated osteocalcin are associated with bone stress injuries in young female athletes. Sci. Rep. 2018;8:1–10. doi:10.1038/s41598-018-36982-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

142. Dao D., Sodhi S., Tabasinejad R., Peterson D., Ayeni O.R., Bhandari M., Farrokhyar F. Serum 25-hydroxyvitamin D levels and stress fractures in military personnel. Am. J. Sports Med. 2015;43:2064–2072. doi:10.1177/0363546514555971. [PubMed] [CrossRef] [Google Scholar]

143. Chen Y.-T., Tenforde A.S., Fredericson M. Update on stress fractures in female athletes: Epidemiology, treatment, and prevention. Curr. Rev. Musculoskelet. Med. 2013;6:173–181. doi:10.1007/s12178-013-9167-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

144. Greydanus D.E., Omar H., Pratt H.D. The adolescent female athlete: Current concepts and conundrums. Pediatr. Clin. N. Am. 2010;57:697–718. doi:10.1016/j.pcl.2010.02.005. [PubMed] [CrossRef] [Google Scholar]

145. Kirchner J.T., Cohen D. Medical problems of the athlete: The female athlete triad. Consultant. 2002;42:1417–1427. [Google Scholar]

146. Putukian M. The female athlete triad. Curr. Opin. Orthop. 2001;12:132–141. doi:10.1097/00001433-200104000-00010. [CrossRef] [Google Scholar]

147. Roth D., Meyer Egli C., Kriemler S., Birkhauser M., Jaeger P., Imhof U., Mannhart C., Seiler R., Marti B. Female athlete triad: Diagnosis, therapy and prevention of the syndrome of disordered eating, amenorrhea and osteoporosis. Schweiz. Z. Sport. Sport. 2000;48:119–132. [Google Scholar]

148. McClung J.P., Gaffney-Stomberg E., Lee J.J. Female athletes: A population at risk of vitamin and mineral deficiencies affecting health and performance. J. Trace Elem. Med. Biol. 2014;28:388–392. doi:10.1016/j.jtemb.2014.06.022. [PubMed] [CrossRef] [Google Scholar]

149. Huhmann K. Menses requires energy: A review of how disordered eating, excessive exercise, and high stress lead to menstrual irregularities. Clin. Ther. 2020;42:401–407. doi:10.1016/j.clinthera.2020.01.016. [PubMed] [CrossRef] [Google Scholar]

150. Golden N.H. A review of the female athlete triad (amenorrhea, osteoporosis and disordered eating) Int. J. Adolesc. Med. Health. 2002;14:9–18. doi:10.1515/IJAMH.2002.14.1.9. [PubMed] [CrossRef] [Google Scholar]

151. Misra M. Bone density in the adolescent athlete. Rev. Endocr. Metab. Disord. 2008;9:139–144. doi:10.1007/s11154-008-9077-1. [PubMed] [CrossRef] [Google Scholar]

152. Nichols D.L., Sanborn C.F., Essery E.V. Bone density and young athletic women. Sports Med. 2007;37:1001–1014. doi:10.2165/00007256-200737110-00006. [PubMed] [CrossRef] [Google Scholar]

153. Lambrinoudaki I., Papadimitriou D. Pathophysiology of bone loss in the female athlete. Ann. N. Y. Acad. Sci. 2010;1205:45–50. doi:10.1111/j.1749-6632.2010.05681.x. [PubMed] [CrossRef] [Google Scholar]

154. Quintas E.M., Ortega R.M., López-Sobaler A.M., Garrido G., Requejo A.M. Influence of dietetic and anthropometric factors and of the type of sport practised on bone density in different groups of women. Eur. J. Clin. Nutr. 2003;57:S58–S62. doi:10.1038/sj.ejcn.1601817. [PubMed] [CrossRef] [Google Scholar]

155. Mountjoy M., Sundgot-Borgen J., Ljungqvist A., Burke L., Carter S., Constantini N., Lebrun C., Meyer N., Sherman R., Steffen K., et al. The IOC consensus statement: Beyond the female athlete triad—relative energy deficiency in sport (RED-S) Br. J. Sports Med. 2014;48:491–497. doi:10.1136/bjsports-2014-093502. [PubMed] [CrossRef] [Google Scholar]

156. Mountjoy M., Sundgot-Borgen J., Sherman R., Tenforde A.S., Torstveit M.K., Budgett R., Burke L., Ackerman K.E., Blauwet C., Constantini N., et al. International olympic committee (Ioc) Consensus statement on relative energy deficiency in sport (Red-s): 2018 update. Int. J. Sport Nutr. Exerc. Metab. 2018;28:316–331. doi:10.1123/ijsnem.2018-0136. [PubMed] [CrossRef] [Google Scholar]

157. Ackerman E.K., Holtzman B., Cooper K.M., Flynn E.F., Bruinvels G., Tenforde A.S., Popp K.L., Simpkin A.J., Parziale A.L. Low energy availability surrogates correlate with health and performance consequences of relative energy deficiency in sport. Br. J. Sports Med. 2019;53:628–633. doi:10.1136/bjsports-2017-098958. [PubMed] [CrossRef] [Google Scholar]

158. Barrack M. Nutrition and the Female Athlete: From Research to Practice. CRC Press, Taylor & Francis; Boca Raton, FL, USA: 2013. Recommendations for optimizing bone strength and reducing fracture risk in female athletes; pp. 229–246. [Google Scholar]

159. Marwaha R.K., Puri S., Tandon N., Dhir S., Agarwal N., Bhadra K., Saini N. Effects of sports training & nutrition on bone mineral density in young Indian healthy females. Indian J. Med. Res. 2011;134:307–313. [PMC free article] [PubMed] [Google Scholar]

160. Tervo T., Nordström P., Nordström A. Effects of badminton and ice hockey on bone mass in young males: A 12-year follow-up. Bone. 2010;47:666–672. doi:10.1016/j.bone.2010.06.022. [PubMed] [CrossRef] [Google Scholar]

161. Ikedo A., Ishibashi A., Matsumiya S., Kaizaki A., Ebi K., Fujita S. Comparison of site-specific bone mineral densities between endurance runners and sprinters in adolescent women. Nutrients. 2016;8:781. doi:10.3390/nu8120781. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

162. Prelack K., Dwyer J., Ziegler P., Kehayias J.J. Bone mineral density in elite adolescent female figure skaters. J. Int. Soc. Sports Nutr. 2012;9:57. doi:10.1186/1550-2783-9-57. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

163. Fanous N., Barb D. Adult hypophosphatasia manifests in a marathon runner. BMJ Case Rep. 2020;13:e234764. doi:10.1136/bcr-2020-234764. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

164. Beck B.R., Daly R.M., Singh M.A.F., Taaffe D.R. Exercise and Sports Science Australia (ESSA) position statement on exercise prescription for the prevention and management of osteoporosis. J. Sci. Med. Sport. 2017;20:438–445. doi:10.1016/j.jsams.2016.10.001. [PubMed] [CrossRef] [Google Scholar]

165. Inklebarger J., Griffin M., Taylor M.J.D., Dembry R.B. Femoral and tibial stress fractures associated with vitamin D insufficiency. J. R. Army Med. Corps. 2013;160:61–63. doi:10.1136/jramc-2013-000085. [PubMed] [CrossRef] [Google Scholar]

166. McCabe M.P., Smyth M.P., Richardson D.R. Current concept review: Vitamin D and stress fractures. Foot Ankle Int. 2012;33:526–533. doi:10.3113/FAI.2012.0526. [PubMed] [CrossRef] [Google Scholar]

167. Ross J., Woodward A. Risk factors for injury during basic military training. J. Occup. Environ. Med. 1994;36:1120–1126. doi:10.1097/00043764-199410000-00015. [PubMed] [CrossRef] [Google Scholar]

168. Zukas R., Sloat N., Wright P. Are soft in-soles or orthotics better than no insoles to prevent stress fractures of the lower extremity in adults? J. Okla. State Med. Assoc. 2013;106:81–82. [PubMed] [Google Scholar]

169. Hume P., Hopkins W., Rome K., Maulder P., Coyle G., Nigg B. Effectiveness of foot orthoses for treatment and prevention of lower limb injuries. Sports Med. 2008;38:759–779. doi:10.2165/00007256-200838090-00005. [PubMed] [CrossRef] [Google Scholar]

170. Sivakumar G., Koziarz A., Farrokhyar F. Vitamin D supplementation in military personnel: A systematic review of randomized controlled trials. Sports Health A Multidiscip. Approach. 2019;11:425–431. doi:10.1177/1941738119857717. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

171. Gaffney-Stomberg E., Lutz L.J., Rood J.C., Cable S.J., Pasiakos S.M., Young A.J., McClung J.P. Calcium and vitamin D supplementation maintains parathyroid hormone and improves bone density during initial military training: A randomized, double-blind, placebo controlled trial. Bone. 2014;68:46–456. doi:10.1016/j.bone.2014.08.002. [PubMed] [CrossRef] [Google Scholar]

172. Bennell K.L., Malcolm S.A., Thomas S.A., Reid S.J., Brukner P.D., Ebeling P.R., Wark J.D. Risk factors for stress fractures in track and field athletes. Am. J. Sports Med. 1996;24:810–818. doi:10.1177/036354659602400617. [PubMed] [CrossRef] [Google Scholar]

173. Beck T.J., Ruff C.B., Mourtada F.A., Shaffer R.A., Maxwell-Williams K., Kao G.L., Sartoris D.J., Brodine S. Dual-energy X-ray absorptiometry derived structural geometry for stress fracture prediction in male U.S. marine corps recruits. J. Bone Min. Res. 2009;11:645–653. doi:10.1002/jbmr.5650110512. [PubMed] [CrossRef] [Google Scholar]

174. Mallinson R.J., Southmayd E.A., De Souza M.J. Geometric and “true” densitometric characteristics of bones in athletes with stress fracture and menstrual disturbances: A systematic review. Sports Med. 2019;49:1059–1078. doi:10.1007/s40279-019-01109-6. [PubMed] [CrossRef] [Google Scholar]

175. Gaffney-Stomberg E., Nakayama A.T., Guerriere K.I., Lutz L.J., Walker L.A., Staab J.S., Scott J.M., Gasier H.G., McClung J.P. Calcium and vitamin D supplementation and bone health in Marine recruits: Effect of season. Bone. 2019;123:224–233. doi:10.1016/j.bone.2019.03.021. [PubMed] [CrossRef] [Google Scholar]

176. Friedl K.E., Evans R.K., Moran D.S. Stress fracture and military medical readiness. Med. Sci. Sports Exerc. 2008;40:S609–S622. doi:10.1249/MSS.0b013e3181892d53. [PubMed] [CrossRef] [Google Scholar]

177. Shuler F.D., Wingate M.K., Moore G.H., Giangarra C. Sports health benefits of vitamin D. Sports Health A Multidiscip. Approach. 2012;4:496–501. doi:10.1177/1941738112461621. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

178. Lovell G. Vitamin D status of females in an elite gymnastics program. Clin. J. Sport Med. 2008;18:159–161. doi:10.1097/JSM.0b013e3181650eee. [PubMed] [CrossRef] [Google Scholar]

179. Tenforde A.S., Parziale A.L., Popp K.L., Ackerman K.E. Low bone mineral density in male athletes is associated with bone stress injuries at anatomic sites with greater trabecular composition. Am. J. Sports Med. 2018;46:30–36. doi:10.1177/0363546517730584. [PubMed] [CrossRef] [Google Scholar]

180. Shakked R.J., Walters E.E., O’Malley M.J. Tarsal navicular stress fractures. Curr. Rev. Musculoskelet. Med. 2017;10:122–130. doi:10.1007/s12178-017-9392-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

181. Burgi A.A., Gorham E.D., Garland C.F., Mohr S.B., Garland F.C., Zeng K., Thompson K., Lappe J.M. High serum 25-hydroxyvitamin D is associated with a low incidence of stress fractures. J. Bone Min. Res. 2011;26:2371–2377. doi:10.1002/jbmr.451. [PubMed] [CrossRef] [Google Scholar]

182. Bezrati I., Hammami R., Ben Fradj M.K., Martone D., Padulo J., Feki M., Chaouachi A., Kaabachi N. Association of plasma 25-hydroxyvitamin D with physical performance in physically active children. Appl. Physiol. Nutr. Metab. 2016;41:1124–1128. doi:10.1139/apnm-2016-0097. [PubMed] [CrossRef] [Google Scholar]

183. Wentz L.M., Liu P.-Y., Ilich J.Z., Haymes E.M. Female distance runners training in Southeastern United States have adequate vitamin D status. Int. J. Sport Nutr. Exerc. Metab. 2016;26:397–403. doi:10.1123/ijsnem.2014-0177. [PubMed] [CrossRef] [Google Scholar]

Vitamin D and Stress Fractures in Sport: Preventive and Therapeutic Measures—A Narrative Review (2024)

FAQs

Does vitamin D prevent stress fractures? ›

Very recent studies suggested that the prevalence of stress fractures decreased when athletes are supplemented daily with 800 IU 25(OH)D and 2000 mg calcium. Recommendations of daily 25(OH)D intake may go up to 2000 IU of 25(OH)D per day.

How does vitamin D prevent fractures? ›

Vitamin D has been known to be vital to musculoskeletal health since it promotes mineralization of osteoid tissue and supports calcium homeostasis and muscle function [1-3]. In previous studies, vitamin D deficiency was associated with low bone mineral density and increased fracture risk in longitudinal studies [4,5].

How can a stress fracture be prevented? ›

Add low-impact activities to your exercise regimen to avoid repetitively stressing a particular part of your body. Get proper nutrition. To keep your bones strong, make sure your diet includes enough calcium, vitamin D and other nutrients.

What is the fastest way to heal a stress fracture? ›

Rest. Rest is the most important part of treating a stress fracture. Avoiding the activity that caused the fracture, as well as any other high-impact activities that cause pain, allows the bone to heal.

What is the role of vitamin D in fracture healing? ›

Abstract. Introduction: Vitamin D is essential for bone mineralization and for the subsequent maintenance of bone quality. Mineralization is part of hard callus formation and bone remodelling, processes, which are part of fracture healing.

What exercises prevent stress fractures? ›

These include swimming, cycling, rowing, and yoga. You can tone muscles and strengthen bones by adding resistance exercises, such as moderate weight-lifting, and stretching to your routine. Strong and flexible muscles can absorb more stress, thereby protecting bones.

Does vitamin D break down bone? ›

Vitamin D is necessary for strong bones and muscles. Without Vitamin D, our bodies cannot effectively absorb calcium, which is essential to good bone health. Children who lack Vitamin D develop a condition called rickets, which causes bone weakness, bowed legs, and other skeletal deformities, such as stooped posture.

How does vitamin D help with stress? ›

In conclusion, vitamin D has immunomodulatory, neuroprotective, and neurotrophic properties and may affect the brain tissues involved in the pathophysiology of depression and anxiety.

What is the role of vitamin D in preventing bone loss? ›

Vitamin D plays three key roles in bone health:

Helps with calcium absorption from food in the intestine. Ensures the correct renewal and mineralization of bone. Helps to keep muscles strong and so reduces the risk of falling.

Does vitamin D help with injury prevention? ›

In relation to VITD supplementation in athletes with deficiency, several studies have shown that this increases muscle strength. Higher serum levels of vitamin D are associated with reduced injury rates and better sports performance.

How does vitamin D affect falls and fractures? ›

Vitamin D supplementation with daily dose of 800 to 1,000 mg was associated with lower risks of osteoporotic fracture and fall (pooled relative risk [RR], 0.87; 95% confidence interval [CI], 0.78 to 0.97 and RR, 0.91; 95% CI, 0.85 to 0.98), while studies with <800 or >1,000 mg/day did not.

What happens if you don't fix a stress fracture? ›

The injury could worsen and become a full-blown fracture, for example. Also, the longer a stress fracture isn't treated, the longer it's likely to take to heal. Another possibility is that it could heal improperly and lead to chronic problems.

What are four signs of a stress fracture? ›

Stress fracture symptoms can include: Swelling, aching, or pain at the fracture point. Pain and tenderness when you touch the bone. Pain that flares up during physical activity and subsides when resting.

What makes a stress fracture worse? ›

Most stress fractures begin as a dull ache and, when ignored, become very painful. Dr. Jokl often hears comments from runners who come in and say things such as, “It was painful, but I kept running.” The additional pounding irritates and exacerbates the stress fracture, causing it to grow larger.

How can stress fractures be prevented? ›

Consider cross-training and include low impact exercises. Cycling, yoga, pilates and hiking are great options. Eat a well-balanced diet that includes a sufficient amount of calcium and vitamin D, which contribute towards healthy bones. Consider taking vitamin D supplements if you are spending more time indoors.

Is it bad to walk on a stress fracture? ›

Doctors do not recommend walking when you have a stress fracture because it may reopen the partially healed fracture, and you may have to begin the recovery process again.

Do stress fractures ever fully heal? ›

Most stress fractures heal in about six to eight weeks, the amount of time it typically takes the body to generate new bone cells to repair the tiny cracks in the bone.

How much vitamin D should I take to heal a broken bone? ›

Your doctor may recommend up to 5000u Vitamin D3 daily during periods of bone healing (available over-the-counter at your pharmacy).

Can you take too much vitamin D? ›

Yes, getting too much vitamin D can be harmful. Very high levels of vitamin D in your blood (greater than 375 nmol/L or 150 ng/mL) can cause nausea, vomiting, muscle weakness, confusion, pain, loss of appetite, dehydration, excessive urination and thirst, and kidney stones.

What foods are good for healing bones? ›

Calcium
  • milk, cheese and other dairy foods.
  • green leafy vegetables, such as broccoli, cabbage and okra, but not spinach.
  • soya beans.
  • tofu.
  • plant-based drinks (such as soya drink) with added calcium.
  • nuts.
  • bread and anything made with fortified flour.
  • fish where you eat the bones, such as sardines and pilchards.

What happens if you keep playing with a stress fracture? ›

At Dr. Louis Keppler & Associates in Independence, Ohio, our staff of dedicated experts wants you to live an active, healthy lifestyle that includes exercise and sports. However, trying to play through the pain of a stress fracture could ultimately lead to a worse injury that requires a longer recovery time.

How does exercise prevent fractures? ›

Physical activities continue to stimulate increases in bone diameter throughout the lifespan. These exercise-stimulated increases in bone diameter diminish the risk of fractures by mechanically counteracting the thinning of bones and increases in bone porosity.

How should a stress fracture be managed? ›

Treatment / Management

General principles of management include relative rest/non-weight bearing for a period of 2 to 6 weeks, and then gradual reintroduction of activity. A low-risk stress fracture can be seen in the posterior tibia, 2nd to 4th metatarsals, femur, inferior and superior pubic rami, sacrum, and fibula.

What supplements help with stress fractures? ›

7 Nutrients & Foods That Help Prevent Stress Fractures
  • Magnesium. Magnesium plays various key roles in bone health, it contributes to the structure of bones and it controls the absorption and metabolism of calcium in bones. ...
  • Silicon. ...
  • Vitamin D. ...
  • Vitamin K. ...
  • Folic acid. ...
  • Vitamin B12.
Sep 24, 2017

Does vitamin D stop bone cracking? ›

For instance, a meta-analysis by Bischoff-Ferrari et al concluded that with a “higher” dose of oral vitamin D, nonvertebral “fractures should be reduced by at least 20% for individuals aged 65 years or older.”1 The effect of vitamin D is not limited to bone health, that is, stronger bones are less likely to fracture, ...

Does vitamin D help heal injuries? ›

Vitamin D plays a role in maintaining the homeostasis of various biological systems, such as accelerating wound healing, immune system (regulating the physiology of the immune response and reducing overregulation of T-cell responses), helping bone formation, skin (modulating the proliferation, differentiation, and ...

What vitamin helps fracture healing? ›

It is commonly believed that the only nutrients needed for healthy bones and, therefore, the only ones that can enhance the fracture healing process are vitamin D and calcium [58].

Top Articles
Latest Posts
Article information

Author: Foster Heidenreich CPA

Last Updated:

Views: 5954

Rating: 4.6 / 5 (76 voted)

Reviews: 83% of readers found this page helpful

Author information

Name: Foster Heidenreich CPA

Birthday: 1995-01-14

Address: 55021 Usha Garden, North Larisa, DE 19209

Phone: +6812240846623

Job: Corporate Healthcare Strategist

Hobby: Singing, Listening to music, Rafting, LARPing, Gardening, Quilting, Rappelling

Introduction: My name is Foster Heidenreich CPA, I am a delightful, quaint, glorious, quaint, faithful, enchanting, fine person who loves writing and wants to share my knowledge and understanding with you.