Citric Acid: A Multifunctional Pharmaceutical Excipient (2024)

1. Expert Market Research Global Citric Acid Market. Press Release. 2021. [(accessed on 18 November 2021)]. Available online: https://www.expertmarketresearch.com/reports/citric-acid-market

2. Dhillon G.S., Brar S.K., Verma M., Tyagi R.D. Recent advances in citric acid bio-production and recovery. Food Bioprocess Technol. 2010;4:505–529. doi:10.1007/s11947-010-0399-0. [CrossRef] [Google Scholar]

3. Ciriminna R., Meneguzzo F., Delisi R., Pagliaro M. Citric acid: Emerging applications of key biotechnology industrial product. Chem. Cent. J. 2017;11:22. doi:10.1186/s13065-017-0251-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

4. Naji-Tabasi S., Emadzadeh B., Shahidi-Noghabi M., Abbaspour M., Akbari E. Physico-chemical and antioxidant properties of barberry juice powder and its effervescent tablets. Chem. Biol. Technol. Agric. 2021;8:23. doi:10.1186/s40538-021-00220-z. [CrossRef] [Google Scholar]

5. Dubray C., Maincent P., Milon J.Y. From the pharmaceutical to the clinical: The case for effervescent paracetamol in pain management. A narrative review. Curr. Med Res. Opin. 2021;37:1039–1048. doi:10.1080/03007995.2021.1902297. [PubMed] [CrossRef] [Google Scholar]

6. Behera B.C., Mishra R., Mohapatra S. Microbial citric acid: Production, properties, application, and future perspectives. Food Front. 2021;2:62–76. doi:10.1002/fft2.66. [CrossRef] [Google Scholar]

7. Sinko P.J. Ionic Equilibria. In: Troy D., editor. Martin’s Physical Pharmacy and Pharmaceutical Sciences. Lippincott Williams and Wilkins Philadelphia; New York, NY, USA: 2006. pp. 161–185. [Google Scholar]

8. Max B., Salgado J.M., Rodriguez N., Cortes S., Converti A., Dominguez J.M. Biotechnological production of citric acid. Braz. J. Microbiol. 2010;41:862–875. doi:10.1590/S1517-83822010000400005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

9. Vandenberghe L.P.S., Soccol C.R., Pandey A., Lebeault J.M. Microbial production of citric acid. Braz. Arch. Biol. Technol. 1999;42:263–276. doi:10.1590/S1516-89131999000300001. [CrossRef] [Google Scholar]

10. Cavallo E., Charreau H., Cerrutti P., Foresti M.L. Yarrowia lipolytica: A model yeast for citric acid production. FEMS Yeast Res. 2017;17:17. doi:10.1093/femsyr/fox084. [PubMed] [CrossRef] [Google Scholar]

11. Jungbunzlaurer Suisse AG Citrics Product Group. [(accessed on 18 November 2021)]. Available online: https://www.jungbunzlauer.com/en/services/downloads.html

12. Kalaimani N., Ramya K., Vinitha G., Aarthi R., Ramachandra R.C. Structural, spectral, thermal and nonlinear optical analysis of anhydrous citric acid crystal. Optik. 2019;192:162960. doi:10.1016/j.ijleo.2019.162960. [CrossRef] [Google Scholar]

13. Bergeron M.J., Clemencon B., Hediger M.A., Markovich D. SLC13 family of Na(+)-coupled di- and tri-carboxylate/sulfate transporters. Mol. Asp. Med. 2013;34:299–312. doi:10.1016/j.mam.2012.12.001. [PubMed] [CrossRef] [Google Scholar]

14. Pajor A.M. Sodium-coupled dicarboxylate and citrate transporters from the SLC13 family. Pflug. Arch. 2014;466:119–130. doi:10.1007/s00424-013-1369-y. [PubMed] [CrossRef] [Google Scholar]

15. Pajor A.M. Molecular properties of the SLC13 family of dicarboxylate and sulfate transporters. Pflug. Arch. 2006;451:597–605. doi:10.1007/s00424-005-1487-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

16. Gopal E., Miyauchi S., Martin P.M., Ananth S., Srinivas S.R., Smith S.B., Prasad P.D., Ganapathy V. Expression and functional features of NaCT, a sodium-coupled citrate transporter, in human and rat livers and cell lines. Am. J. Physiol. Gastrointes. Liver Physiol. 2007;292:G402–G408. doi:10.1152/ajpgi.00371.2006. [PubMed] [CrossRef] [Google Scholar]

17. Monchi M. Citrate pathophysiology and metabolism. Transfus. Apher. Sci. 2017;56:28–30. doi:10.1016/j.transci.2016.12.013. [PubMed] [CrossRef] [Google Scholar]

18. Pajor A.M., Randolph K.M. Inhibition of the Na+/dicarboxylate cotransporter by anthranilic acid derivatives. Mol. Pharmacol. 2007;72:1330–1336. doi:10.1124/mol.107.035352. [PubMed] [CrossRef] [Google Scholar]

19. Chen X., Tsukaguchi H., Chen X.Z., Berger U.V., Hediger M.A. Molecular and functional analysis of SDCT2, a novel rat sodium-dependent dicarboxylate transporter. J. Clin. Investig. 1999;103:1159–1168. doi:10.1172/JCI5392. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

20. Inoue K., Zhuang L., Maddox D.M., Smith S.B., Ganapathy V. Human sodium-coupled citrate transporter, the orthologue of Drosophila Indy, as a novel target for lithium action. Biochem. J. 2003;374:21–26. doi:10.1042/bj20030827. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

21. Thevenon J., Milh M., Feillet F., St-Onge J., Duffourd Y., Juge C., Roubertie A., Heron D., Mignot C., Raffo E., et al. Mutations in SLC13A5 cause autosomal-recessive epileptic encephalopathy with seizure onset in the first days of life. Am. J. Hum. Genet. 2014;95:113–120. doi:10.1016/j.ajhg.2014.06.006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

22. von Loeffelholz C., Lieske S., Neuschäfer-Rube F., Willmes D.M., Raschzok N., Sauer I.M., König J., Fromm M.F., Horn P., Chatzigeorgiou A. The human longevity gene hom*olog INDY and interleukin-6 interact in hepatic lipid metabolism. Hepatology. 2017;66:616–630. doi:10.1002/hep.29089. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

23. Birkenfeld A.L., Lee H.-Y., Guebre-Egziabher F., Alves T.C., Jurczak M.J., Jornayvaz F.R., Zhang D., Hsiao J.J., Martin-Montalvo A., Fischer-Rosinsky A. Deletion of the mammalian INDY hom*olog mimics aspects of dietary restriction and protects against adiposity and insulin resistance in mice. Cell Metab. 2011;14:184–195. doi:10.1016/j.cmet.2011.06.009. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

24. Dan N., Samanta K., Almoazen H. An Update on Pharmaceutical Strategies for Oral Delivery of Therapeutic Peptides and Proteins in Adults and Pediatrics. Children. 2020;7 doi:10.3390/children7120307. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

25. Froment D.P., Molitoris B.A., Buddington B., Miller N., Alfrey A.C. Site and mechanism of enhanced gastrointestinal absorption of aluminum by citrate. Kidney Int. 1989;36:978–984. doi:10.1038/ki.1989.290. [PubMed] [CrossRef] [Google Scholar]

26. Perales S., Barbera R., Lagarda M.J., Farre R. Bioavailability of calcium from milk-based formulas and fruit juices containing milk and cereals estimated by in vitro methods (solubility, dialyzability, and uptake and transport by caco-2 cells) J. Agric. Food Chem. 2005;53:3721–3726. doi:10.1021/jf047977y. [PubMed] [CrossRef] [Google Scholar]

27. Shiowatana J., Purawatt S., Sottimai U., Taebunpakul S., Siripinyanond A. Enhancement effect study of some organic acids on the calcium availability of vegetables: Application of the dynamic in vitro simulated gastrointestinal digestion method with continuous-flow dialysis. J. Agric. Food Chem. 2006;54:9010–9016. doi:10.1021/jf062073t. [PubMed] [CrossRef] [Google Scholar]

28. Sinko P.J., Lee Y.H., Makhey V., Leesman G.D., Sutyak J.P., Yu H., Perry B., Smith C.L., Hu P., Wagner E.J., et al. Biopharmaceutical approaches for developing and assessing oral peptide delivery strategies and systems: In vitro permeability and in vivo oral absorption of salmon calcitonin (sCT) Pharm. Res. 1999;16:527–533. doi:10.1023/A:1018819012405. [PubMed] [CrossRef] [Google Scholar]

29. Spickett J.T., Bell R.R., Stawell J., Polan S. The influence of dietary citrate on the absorption and retention of orally ingested lead. Agents Actions. 1984;15:459–462. doi:10.1007/BF01972388. [PubMed] [CrossRef] [Google Scholar]

30. Molitoris B.A., Froment D.H., Mackenzie T.A., Huffer W.H., Alfrey A.C. Citrate: A major factor in the toxicity of orally administered aluminum compounds. Kidney Int. 1989;36:949–953. doi:10.1038/ki.1989.286. [PubMed] [CrossRef] [Google Scholar]

31. Slanina P., Frech W., Ekstrom L.G., Loof L., Slorach S., Cedergren A. Dietary citric acid enhances absorption of aluminum in antacids. Clin. Chem. 1986;32:539–541. doi:10.1093/clinchem/32.3.539. [PubMed] [CrossRef] [Google Scholar]

32. Di Lenarda R., Cadenaro M., Sbaizero O. Effectiveness of 1 mol L-1 citric acid and 15% EDTA irrigation on smear layer removal. Int. Endod. J. 2000;33:46–52. doi:10.1046/j.1365-2591.2000.00273.x. [PubMed] [CrossRef] [Google Scholar]

33. Haznedaroglu F. Efficacy of various concentrations of citric acid at different pH values for smear layer removal. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2003;96:340–344. doi:10.1016/S1079-2104(03)00164-1. [PubMed] [CrossRef] [Google Scholar]

34. Garberoglio R., Becce C. Smear layer removal by root canal irrigants. A comparative scanning electron microscopic study. Oral Surg. Oral Med. Oral Pathol. 1994;78:359–367. doi:10.1016/0030-4220(94)90069-8. [PubMed] [CrossRef] [Google Scholar]

35. Brown T.D., Whitehead K.A., Mitragotri S. Materials for oral delivery of proteins and peptides. Nat. Rev. Mater. 2020;5:127–148. doi:10.1038/s41578-019-0156-6. [CrossRef] [Google Scholar]

36. Lee Y.H., Perry B.A., Labruno S., Lee H.S., Stern W., Falzone L.M., Sinko P.J. Impact of regional intestinal pH modulation on absorption of peptide drugs: Oral absorption studies of salmon calcitonin in beagle dogs. Pharm. Res. 1999;16:1233–1239. doi:10.1023/A:1014849630520. [PubMed] [CrossRef] [Google Scholar]

37. Welling S.H., Hubalek F., Jacobsen J., Brayden D.J., Rahbek U.L., Buckley S.T. The role of citric acid in oral peptide and protein formulations: Relationship between calcium chelation and proteolysis inhibition. Eur. J. Pharm. Biopharm. 2014;86:544–551. doi:10.1016/j.ejpb.2013.12.017. [PubMed] [CrossRef] [Google Scholar]

38. Aguirre T.A., Rosa M., Coulter I.S., Brayden D.J. In vitro and in vivo preclinical evaluation of a minisphere emulsion-based formulation (SmPill(R)) of salmon calcitonin. Eur. J. Pharm. Sci. 2015;79:102–111. doi:10.1016/j.ejps.2015.09.001. [PubMed] [CrossRef] [Google Scholar]

39. Bonferoni M.C., Sandri G., Rossi S., Ferrari F., Gibin S., Caramella C. Chitosan citrate as multifunctional polymer for vagin*l delivery. Evaluation of penetration enhancement and peptidase inhibition properties. Eur. J. Pharm. Sci. 2008;33:166–176. doi:10.1016/j.ejps.2007.11.004. [PubMed] [CrossRef] [Google Scholar]

40. Hu Y.Y., Rawal A., Schmidt-Rohr K. Strongly bound citrate stabilizes the apatite nanocrystals in bone. Proc. Natl. Acad. Sci. USA. 2010;107:22425–22429. doi:10.1073/pnas.1009219107. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

41. Costello L.C., Franklin R.B. A review of the important central role of altered citrate metabolism during the process of stem cell differentiation. J. Regen. Med. Tissue Eng. 2013;2:1. doi:10.7243/2050-1218-2-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

42. Costello L.C., Chellaiah M.A., Zou J., Reynolds M.A., Franklin R.B. In vitro BMP2 stimulation of osteoblast citrate production in concert with mineralized bone nodule formation. J. Regen. Med. Tissue Eng. 2015;4:2. doi:10.7243/2050-1218-4-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

43. Costello L.C., Franklin R.B., Reynolds M.A., Chellaiah M. The Important Role of Osteoblasts and Citrate Production in Bone Formation: “Osteoblast Citration” as a New Concept for an Old Relationship. Open Bone J. 2012;4:27–34. doi:10.2174/1876525401204010027. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

44. Davies E., Muller K.H., Wong W.C., Pickard C.J., Reid D.G., Skepper J.N., Duer M.J. Citrate bridges between mineral platelets in bone. Proc. Natl. Acad. Sci. USA. 2014;111:E1354–E1363. doi:10.1073/pnas.1315080111. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

45. de Rezende M.L., Coesta P.T., de Oliveira R.C., Salmeron S., Sant’Ana A.C., Damante C.A., Greghi S.L., Consolaro A. Bone demineralization with citric acid enhances adhesion and spreading of preosteoblasts. J. Periodontol. 2015;86:146–154. doi:10.1902/jop.2014.130657. [PubMed] [CrossRef] [Google Scholar]

46. Carvalho E.B.S., Veronesi G.F., Manfredi G.G.P., Damante C.A., Sant’Ana A.C.P., Greghi S.L.A., Zangrando M.S.R., Consolaro A., Rezende M.L.R. Bone demineralization improves onlay graft consolidation: A histological study in rat calvaria. J. Periodontol. 2021;92:1–10. doi:10.1002/JPER.20-0390. [PubMed] [CrossRef] [Google Scholar]

47. Tran R.T., Wang L., Zhang C., Huang M., Tang W., Zhang C., Zhang Z., Jin D., Banik B., Brown J.L., et al. Synthesis and characterization of biomimetic citrate-based biodegradable composites. J. Biomed. Mater. Res. A. 2014;102:2521–2532. doi:10.1002/jbm.a.34928. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

48. Raucci M.G., Alvarez-Perez M.A., Demitri C., Giugliano D., De Benedictis V., Sannino A., Ambrosio L. Effect of citric acid crosslinking cellulose-based hydrogels on osteogenic differentiation. J. Biomed. Mater. Res. Part. A. 2015;103:2045–2056. doi:10.1002/jbm.a.35343. [PubMed] [CrossRef] [Google Scholar]

49. Tran R.T., Yang J., Ameer G.A. Citrate-Based Biomaterials and Their Applications in Regenerative Engineering. Annu. Rev. Mater. Res. 2015;45:277–310. doi:10.1146/annurev-matsci-070214-020815. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

50. Sun D.W., Chen Y.H., Tran R.T., Xu S., Xie D.H., Jia C.H., Wang Y.C., Guo Y., Zhang Z.M., Guo J.S., et al. Citric Acid-based Hydroxyapatite Composite Scaffolds Enhance Calvarial Regeneration. Sci. Rep. 2014;4:6912. doi:10.1038/srep06912. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

51. Goel H., Rai P., Rana V., Tiwary A.K. Orally disintegrating systems: Innovations in formulation and technology. Recent Pat. Drug Deliv. Formul. 2008;2:258–274. doi:10.2174/187221108786241660. [PubMed] [CrossRef] [Google Scholar]

52. Poukas V.S., Pollard J.R., Anderson C.T. Rescue therapies for seizures. Curr. Neurol. Neurosci. Rep. 2011;11:418–422. doi:10.1007/s11910-011-0207-x. [PubMed] [CrossRef] [Google Scholar]

53. Rameesa C., Drisya M.K. Orodispersible Tablet: A Patient Friendly Dosage Form. Bali Med. J. 2015;4:17–20. doi:10.15562/bmj.v4i1.101. [CrossRef] [Google Scholar]

54. Kappes S.M., Schmidt S.J., Lee S.Y. Relationship between physical properties and sensory attributes of carbonated beverages. J. Food Sci. 2007;72:S001–S011. doi:10.1111/j.1750-3841.2006.00205.x. [PubMed] [CrossRef] [Google Scholar]

55. Rachid O., Simons F.E., Rawas-Qalaji M., Simons K.J. An electronic tongue: Evaluation of the masking efficacy of sweetening and/or flavoring agents on the bitter taste of epinephrine. AAPS PharmSciTech. 2010;11:550–557. doi:10.1208/s12249-010-9402-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

56. Sotoyama M., Uchida S., Tanaka S., Hakamata A., Odagiri K., Inui N., Watanabe H., Namiki N. Citric Acid Suppresses the Bitter Taste of Olopatadine Hydrochloride Orally Disintegrating Tablets. Biol. Pharm. Bull. 2017;40:451–457. doi:10.1248/bpb.b16-00828. [PubMed] [CrossRef] [Google Scholar]

57. Yildiz S., Aytekin E., Yavuz B., Bozdag Pehlivan S., Vural I., Unlu N. Development and evaluation of orally disintegrating tablets comprising taste-masked mirtaza...apine granu.ules. Pharm. Dev. Technol. 2018;23:488–495. doi:10.1080/10837450.2017.1315670. [PubMed] [CrossRef] [Google Scholar]

58. Khadra I., Obeid M.A., Dunn C., Watts S., Halbert G., Ford S., Mullen A. Characterisation and optimisation of diclofenac sodium orodispersible thin film formulation. Int. J. Pharm. 2019;561:43–46. doi:10.1016/j.ijpharm.2019.01.064. [PubMed] [CrossRef] [Google Scholar]

59. Xu J., Bovet L.L., Zhao K. Taste masking microspheres for orally disintegrating tablets. Int. J. Pharm. 2008;359:63–69. doi:10.1016/j.ijpharm.2008.03.019. [PubMed] [CrossRef] [Google Scholar]

60. Wagner-Hattler L., Wyss K., Schoelkopf J., Huwyler J., Puchkov M. In vitro characterization and mouthfeel study of functionalized calcium carbonate in orally disintegrating tablets. Int. J. Pharm. 2017;534:50–59. doi:10.1016/j.ijpharm.2017.10.009. [PubMed] [CrossRef] [Google Scholar]

61. Carpenter G.H. The secretion, components, and properties of saliva. Annu. Rev. Food Sci. Technol. 2013;4:267–276. doi:10.1146/annurev-food-030212-182700. [PubMed] [CrossRef] [Google Scholar]

62. Hodson N.A., Linden R.W. The effect of monosodium glutamate on parotid salivary flow in comparison to the response to representatives of the other four basic tastes. Physiol. Behav. 2006;89:711–717. doi:10.1016/j.physbeh.2006.08.011. [PubMed] [CrossRef] [Google Scholar]

63. Pein M., Kirsanov D., Ciosek P., del Valle M., Yaroshenko I., Wesoly M., Zabadaj M., Gonzalez-Calabuig A., Wroblewski W., Legin A. Independent comparison study of six different electronic tongues applied for pharmaceutical analysis. J. Pharm. Biomed. Anal. 2015;114:321–329. doi:10.1016/j.jpba.2015.05.026. [PubMed] [CrossRef] [Google Scholar]

64. Pagire S.K., Seaton C.C., Paradkar A. Improving Stability of Effervescent Products by Co-Crystal Formation: A Novel Application of Crystal Engineered Citric Acid. Cryst. Growth Des. 2020;20:4839–4844. doi:10.1021/acs.cgd.0c00616. [CrossRef] [Google Scholar]

65. İpci K., Öktemer T., Birdane L., Altıntoprak N., Muluk N.B., Passali D., Lopatin A., Bellussi L., Mladina R., Pawankar R., et al. Effervescent tablets: A safe and practical delivery system for drug administration. ENT Updates. 2016;6:46–50. doi:10.2399/jmu.2016001009. [CrossRef] [Google Scholar]

66. Aslani A., Fattahi F. Formulation, characterization and physicochemical evaluation of potassium citrate effervescent tablets. Adv. Pharm. Bull. 2013;3:217–225. doi:10.5681/apb.2013.036. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

67. He Y.M., Zhan C.L., Pi C., Zuo Y., Yang S.Y., Hu M., Bai Y.T., Zhao L., Wei Y.M. Enhanced Oral Bioavailability of Felodipine from Solid Lipid Nanoparticles Prepared Through Effervescent Dispersion Technique. AAPS PharmSciTech. 2020;21:170. doi:10.1208/s12249-020-01711-2. [PubMed] [CrossRef] [Google Scholar]

68. Alam M.A., Al-Jenoobi F.I., Al-Mohizea A.M., Ali R. Effervescence Assisted Fusion Technique to Enhance the Solubility of Drugs. AAPS PharmSciTech. 2015;16:1487–1494. doi:10.1208/s12249-015-0381-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

69. Jaipal A., Pandey M.M., Charde S.Y., Raut P.P., Prasanth K.V., Prasad R.G. Effect of HPMC and mannitol on drug release and bioadhesion behavior of buccal discs of buspirone hydrochloride: In-vitro and in-vivo pharmaco*kinetic studies. Saudi Pharm. J. 2015;23:315–326. doi:10.1016/j.jsps.2014.11.012. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

70. Freye E. A new transmucosal drug delivery system for patients whit breakthrough cancer pain:the fentanyl effervescent buccal tablet. J. Pain Res. 2009;2:13–20. [PMC free article] [PubMed] [Google Scholar]

71. Taymouri S., Mostafavi A., Javanmardi M. Formulation and optimization of effervescent tablet containing bismuth sub-citrate. J. Rep. Pharm. Sci. 2019;8:236–244. doi:10.4103/jrptps.JRPTPS_11_19. [CrossRef] [Google Scholar]

72. Mandal U.K., Chatterjee B., Senjoti F.G. Gastro-retentive drug delivery systems and their in vivo success: A recent update. Asian J. Pharm. Sci. 2016;11:575–584. doi:10.1016/j.ajps.2016.04.007. [CrossRef] [Google Scholar]

73. Li Q., Guan X., Cui M., Zhu Z., Chen K., Wen H., Jia D., Hou J., Xu W., Yang X., et al. Preparation and investigation of novel gastro-floating tablets with 3D extrusion-based printing. Int. J. Pharm. 2018;535:325–332. doi:10.1016/j.ijpharm.2017.10.037. [PubMed] [CrossRef] [Google Scholar]

74. Zhai H., Jones D.S., McCoy C.P., Madi A.M., Tian Y., Andrews G.P. Gastroretentive extended-release floating granules prepared using a novel fluidized hot melt granulation (FHMG) technique. Mol. Pharm. 2014;11:3471–3483. doi:10.1021/mp500242q. [PubMed] [CrossRef] [Google Scholar]

75. Patel A., Modasiya M., Shah D., Patel V. Development and in vivo floating behavior of verapamil HCl intragastric floating tablets. AAPS PharmSciTech. 2009;10:310–315. doi:10.1208/s12249-009-9210-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

76. Kumar N., Soni S., Singh T., Kumar A., Ahmad F.J., Bhatnagar A., Mittal G. Development and Optimization of Gastro-Retentive Controlled-Release Tablet of Calcium-Disodium Edentate and its In Vivo Gamma Scintigraphic Evaluation. AAPS PharmSciTech. 2015;16:1270–1280. doi:10.1208/s12249-014-0272-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

77. Varshosaz J., Tavakoli N., Roozbahani F. Formulation and in vitro characterization of ciprofloxacin floating and bioadhesive extended-release tablets. Drug Deliv. 2006;13:277–285. doi:10.1080/10717540500395106. [PubMed] [CrossRef] [Google Scholar]

78. Jagdale S.C., Suryawanshi V.M., Pandya S.V., Kuchekar B.S., Chabukswar A.R. Development of press-coated, floating-pulsatile drug delivery of lisinopril. Sci. Pharm. 2014;82:423–440. doi:10.3797/scipharm.1301-27. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

79. Misra R., Bhardwaj P. Development and Characterization of Novel Floating-Mucoadhesive Tablets Bearing Venlafaxine Hydrochloride. Scientifica. 2016;2016:4282986. doi:10.1155/2016/4282986. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

80. Newman A., Zografi G. Commentary: Considerations in the measurment of glass transition temperatures of pharmaceutical amourphous solids. AAPS Pharm. Sci. Tech. 2020;21:26. doi:10.1208/s12249-019-1562-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

81. Wang W. Lyophilization and development of solid protein pharmaceuticals. Int. J. Pharm. 2000;203:1–60. doi:10.1016/S0378-5173(00)00423-3. [PubMed] [CrossRef] [Google Scholar]

82. Shalaev E.Y., Johnson-Elton T.D., Chang L., Pikal M.J. Thermophysical properties of pharmaceutically compatible buffers at sub-zero temperatures: Implications for freeze-drying. Pharm. Res. 2002;19:195–201. doi:10.1023/A:1014229001433. [PubMed] [CrossRef] [Google Scholar]

83. Pikal M.J., Dellerman K.M., Roy M.L., Riggin R.M. The effects of formulation variables on the stability of freeze-dried human growth hormone. Pharm. Res. 1991;8:427–436. doi:10.1023/A:1015834724528. [PubMed] [CrossRef] [Google Scholar]

84. Fakes M.G., Dali M.V., Haby T.A., Morris K.R., Varia S.A., Serajuddin A.T. Moisture sorption behavior of selected bulking agents used in lyophilized products. PDA J. Pharm. Sci. Technol. 2000;54:144–149. [PubMed] [Google Scholar]

85. Telang C., Yu L., Suryanarayanan R. Effective inhibition of mannitol crystallization in frozen solutions by sodium chloride. Pharm. Res. 2003;20:660–667. doi:10.1023/A:1023263203188. [PubMed] [CrossRef] [Google Scholar]

86. Sundaramurthi P., Suryanarayanan R. Thermophysical properties of carboxylic and amino acid buffers at subzero temperatures: Relevance to frozen state stabilization. J. Phys. Chem. B. 2011;115:7154–7164. doi:10.1021/jp202167p. [PubMed] [CrossRef] [Google Scholar]

87. Sedlak M., Rak D. Large-Scale Inhom*ogeneities in Solutions of Low Molar Mass Compounds and Mixtures of Liquids: Supramolecular Structures or Nanobubbles? J. Phys. Chem. B. 2013;117:2495–2504. doi:10.1021/jp4002093. [PubMed] [CrossRef] [Google Scholar]

88. Shalaev E.Y., Lu Q., Shalaeva M., Zografi G. Acid-catalyzed inversion of sucrose in the amorphous state at very low levels of residual water. Pharm. Res. 2000;17:366–370. doi:10.1023/A:1007517526245. [PubMed] [CrossRef] [Google Scholar]

89. Lu Q., Zografi G. Properties of citric acid at the glass transition. J. Pharm. Sci. 1997;86:1374–1378. doi:10.1021/js970157y. [PubMed] [CrossRef] [Google Scholar]

90. Govindarajan R., Chatterjee K., Gatlin L., Suryanarayanan R., Shalaev E.Y. Impact of freeze-drying on ionization of sulfonephthalein probe molecules in trehalose-citrate systems. J. Pharm. Sci. 2006;95:1498–1510. doi:10.1002/jps.20620. [PubMed] [CrossRef] [Google Scholar]

91. Halpern J.M., Urbanski R., Weinstock A.K., Iwig D.F., Mathers R.T., von Recum H.A. A biodegradable thermoset polymer made by esterification of citric acid and glycerol. J. Biomed. Mater. Res. A. 2014;102:1467–1477. doi:10.1002/jbm.a.34821. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

92. Wrzecionek M., Matyszczak G., Bandzerewicz A., Ruśkowski P., Gadomska-Gajadhu A. Kinetics of Polycondensation of Citric Acid with Glycerol Based on a Genetic Algorithm. Org. Process Res. Dev. 2021;25:271–281. doi:10.1021/acs.oprd.0c00492. [CrossRef] [Google Scholar]

93. Pramanick D., Ray T.T. Synthesis and Biodegradation of Copolyesters from Citric-Acid and Glycerol. Polym. Bull. 1988;19:365–370. doi:10.1007/BF00263938. [CrossRef] [Google Scholar]

94. Yang J., Webb A.R., Pickerill S.J., Hageman G., Ameer G.A. Synthesis and evaluation of poly(diol citrate) biodegradable elastomers. Biomaterials. 2006;27:1889–1898. doi:10.1016/j.biomaterials.2005.05.106. [PubMed] [CrossRef] [Google Scholar]

95. Gyawali D., Nair P., Zhang Y., Tran R.T., Zhang C., Samchukov M., Makarov M., Kim H.K., Yang J. Citric acid-derived in situ crosslinkable biodegradable polymers for cell delivery. Biomaterials. 2010;31:9092–9105. doi:10.1016/j.biomaterials.2010.08.022. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

96. Namazi H., Adeli M. Dendrimers of citric acid and poly (ethylene glycol) as the new drug-delivery agents. Biomaterials. 2005;26:1175–1183. doi:10.1016/j.biomaterials.2004.04.014. [PubMed] [CrossRef] [Google Scholar]

97. Namazi H., Motamedi S., Namvari M. Synthesis of New Functionalized Citric Acid-based Dendrimers as Nanocarrier Agents for Drug Delivery. Bioimpacts. 2011;1:63–69. doi:10.5681/bi.2011.009. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

98. Martel B., Ruffin D., Weltrowski M., Lekchiri Y., Morcellet M. Water-Soluble Polymers and Gels from the Polycondensation between Cyclodexrins and Poly(carboxylic acid)s: A Study of the Preparation Parameters. J. Appl. Polym. Sci. 2005;97:433–442. doi:10.1002/app.21391. [CrossRef] [Google Scholar]

99. Ghorpade V.S., Yadav A.V., Dias R.J. Citric acid crosslinked cyclodextrin/hydroxypropylmethylcellulose hydrogel films for hydrophobic drug delivery. Int. J. Biol. Macromol. 2016;93:75–86. doi:10.1016/j.ijbiomac.2016.08.072. [PubMed] [CrossRef] [Google Scholar]

100. Joudieh S., Bon P., Martel B., Skiba M., Lahiani-Skiba M. Cyclodextrin polymers as efficient solubilizers of albendazole: Complexation and physico-chemical characterization. J. Nanosci. Nanotechnol. 2009;9:132–140. doi:10.1166/jnn.2009.J092. [PubMed] [CrossRef] [Google Scholar]

101. Laurent T., Kacem I., Blanchemain N., Cazaux F., Neut C., Hildebrand H.F., Martel B. Cyclodextrin and maltodextrin finishing of a polypropylene abdominal wall implant for the prolonged delivery of ciprofloxacin. Acta Biomater. 2011;7:3141–3149. doi:10.1016/j.actbio.2011.04.020. [PubMed] [CrossRef] [Google Scholar]

102. Garcia-Fernandez M.J., Tabary N., Martel B., Cazaux F., Oliva A., Taboada P., Concheiro A., Alvarez-Lorenzo C. Poly-(cyclo)dextrins as ethoxzolamide carriers in ophthalmic solutions and in contact lenses. Carbohyd. Polym. 2013;98:1343–1352. doi:10.1016/j.carbpol.2013.08.003. [PubMed] [CrossRef] [Google Scholar]

103. Anand R., Malanga M., Manet I., Manoli F., Tuza K., Aykac A., Ladaviere C., Fenyvesi E., Vargas-Berenguel A., Gref R., et al. Citric acid-gamma-cyclodextrin crosslinked oligomers as carriers for doxorubicin delivery. Photoch. Photobio. Sci. 2013;12:1841–1854. doi:10.1039/c3pp50169h. [PubMed] [CrossRef] [Google Scholar]

104. Danel C., Azaroual N., Chavaria C., Odou P., Martel B., Vaccher C. Comparative study of the complex forming ability and enantioselectivity of cyclodextrin polymers by CE and 1H NMR. Carbohydr. Polym. 2013;92:2282–2292. doi:10.1016/j.carbpol.2012.11.095. [PubMed] [CrossRef] [Google Scholar]

105. Chen L., Li J.G., Wang S., Zhu S.J., Zhu C., Zheng B.Y., Yang G., Guan S.K. Surface modification of the biodegradable cardiovascular stent material Mg-Zn-Y-Nd alloy via conjugating REDV peptide for better endothelialization. J. Mater. Res. 2018;33:4123–4133. doi:10.1557/jmr.2018.410. [CrossRef] [Google Scholar]

106. Kou F., Liu C.S., Wang L.G., Yasin A., Li J.A., Guan S.K. Fabrication of Citric Acid/RGD Multilayers on Mg-Zn-Y-Nd Alloy via Layer-by-Layer Self-Assembly for Promoting Surface Biocompatibility. Adv. Mater. Interfaces. 2021;8:2002241. doi:10.1002/admi.202002241. [CrossRef] [Google Scholar]

107. Nangare S., Vispute Y., Tade R., Dugam S., Patil P. Pharmaceutical applications of citric acid. Future J. Pharm. Sci. 2021;7:54. doi:10.1186/s43094-021-00203-9. [CrossRef] [Google Scholar]

108. Pooresmaeil M., Javanbakht S., Namazi H., Shaabani A. Application or function of citric acid in drug delivery platforms. Med. Res. Rev. 2021;42:800–849. doi:10.1002/med.21864. [PubMed] [CrossRef] [Google Scholar]

109. Vasconcelos T., Sarmento B., Costa P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov. Today. 2007;12:1068–1075. doi:10.1016/j.drudis.2007.09.005. [PubMed] [CrossRef] [Google Scholar]

110. Dengale S.J., Grohganz H., Rades T., Lobmann K. Recent advances in co-amorphous drug formulations. Adv. Drug Deliv Rev. 2016;100:116–125. doi:10.1016/j.addr.2015.12.009. [PubMed] [CrossRef] [Google Scholar]

111. Hirakawa Y., Ueda H., Takata Y., Minamihata K., Wakabayashi R., Kamiya N., Goto M. Co-amorphous formation of piroxicam-citric acid to generate supersaturation and improve skin permeation. Eur. J. Pharm. Sci. 2021;158:105667. doi:10.1016/j.ejps.2020.105667. [PubMed] [CrossRef] [Google Scholar]

112. Ueda H., Hirakawa Y., Tanaka H., Miyano T., Sugita K. Applicability of an Experimental Grade of Hydroxypropyl Methylcellulose Acetate Succinate as a Carrier for Formation of Solid Dispersion with Indomethacin. Pharmaceutics. 2021;13:353. doi:10.3390/pharmaceutics13030353. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

113. Fung M.H., DeVault M., Kuwata K.T., Suryanarayanan R. Drug-Excipient Interactions: Effect on Molecular Mobility and Physical Stability of Ketoconazole-Organic Acid Coamorphous Systems. Mol. Pharm. 2018;15:1052–1061. doi:10.1021/acs.molpharmaceut.7b00932. [PubMed] [CrossRef] [Google Scholar]

114. Masuda T., Yoshihashi Y., Yonemochi E., Fujii K., Uekusa H., Terada K. Cocrystallization and amorphization induced by drug-excipient interaction improves the physical properties of acyclovir. Int. J. Pharm. 2012;422:160–169. doi:10.1016/j.ijpharm.2011.10.046. [PubMed] [CrossRef] [Google Scholar]

115. Laitinen R., Lobmann K., Strachan C.J., Grohganz H., Rades T. Emerging trends in the stabilization of amorphous drugs. Int. J. Pharm. 2013;453:65–79. doi:10.1016/j.ijpharm.2012.04.066. [PubMed] [CrossRef] [Google Scholar]

116. Hoppu P., Jouppila K., Rantanen J., Schantz S., Juppo A.M. Characterisation of blends of paracetamol and citric acid. J. Pharm. Pharmacol. 2007;59:373–381. doi:10.1211/jpp.59.3.0006. [PubMed] [CrossRef] [Google Scholar]

117. Wang J., Chang R., Zhao Y., Zhang J., Zhang T., Fu Q., Chang C., Zeng A. Coamorphous Loratadine-Citric Acid System with Enhanced Physical Stability and Bioavailability. AAPS PharmSciTech. 2017;18:2541–2550. doi:10.1208/s12249-017-0734-0. [PubMed] [CrossRef] [Google Scholar]

118. Hu Y., Gniado K., Erxleben A., McArdle P. Mechanochemical Reaction of Sulfathiazole with Carboxylic Acids: Formation of a Cocrystal, a Salt, and Coamorphous Solids. Cryst. Growth Des. 2014;14:803–813. doi:10.1021/cg401673z. [CrossRef] [Google Scholar]

119. Newman A., Reutzel-Edens S.M., Zografi G. Coamorphous Active Pharmaceutical Ingredient-Small Molecule Mixtures: Considerations in the Choice of Coformers for Enhancing Dissolution and Oral Bioavailability. J. Pharm. Sci. 2018;107:5–17. doi:10.1016/j.xphs.2017.09.024. [PubMed] [CrossRef] [Google Scholar]

120. Ueda H., Wu W., Lobmann K., Grohganz H., Mullertz A., Rades T. Application of a Salt Coformer in a Co-Amorphous Drug System Dramatically Enhances the Glass Transition Temperature: A Case Study of the Ternary System Carbamazepine, Citric Acid, and l-Arginine. Mol. Pharm. 2018;15:2036–2044. doi:10.1021/acs.molpharmaceut.8b00174. [PubMed] [CrossRef] [Google Scholar]

121. Parikh T., Sandhu H.K., Talele T.T., Serajuddin A.T. Characterization of Solid Dispersion of Itraconazole Prepared by Solubilization in Concentrated Aqueous Solutions of Weak Organic Acids and Drying. Pharm. Res. 2016;33:1456–1471. doi:10.1007/s11095-016-1890-8. [PubMed] [CrossRef] [Google Scholar]

122. Singh S., Parikh T., Sandhu H.K., Shah N.H., Malick A.W., Singhal D., Serajuddin A.T. Supersolubilization and amorphization of a model basic drug, haloperidol, by interaction with weak acids. Pharm. Res. 2013;30:1561–1573. doi:10.1007/s11095-013-0994-7. [PubMed] [CrossRef] [Google Scholar]

123. Parikh T., Serajuddin A.T.M. Development of Fast-Dissolving Amorphous Solid Dispersion of Itraconazole by Melt Extrusion of its Mixture with Weak Organic Carboxylic Acid and Polymer. Pharm. Res. 2018;35:127. doi:10.1007/s11095-018-2407-4. [PubMed] [CrossRef] [Google Scholar]

124. Newman A., Zografi G. An Examination of Water Vapor Sorption by Multicomponent Crystalline and Amorphous Solids and Its Effects on Their Solid-State Properties. J. Pharm. Sci. 2019;108:1061–1080. doi:10.1016/j.xphs.2018.10.038. [PubMed] [CrossRef] [Google Scholar]

125. Elbagerma M.A., Edwards H.G.M., Munshi T., Scowen I.J. Identification of a new co-crystal of salicylic acid and benzamide of pharmaceutical relevance. Anal. Bioanal. Chem. 2010;397:137–146. doi:10.1007/s00216-009-3375-7. [PubMed] [CrossRef] [Google Scholar]

126. Aakeroy C.B., Salmon D.J. Building co-crystals with molecular sense and supramolecular sensibility. Crystengcomm. 2005;7:439–448. doi:10.1039/b505883j. [CrossRef] [Google Scholar]

127. Vishweshwar P., McMahon J.A., Bis J.A., Zaworotko M.J. Pharmaceutical co-crystals. J. Pharm. Sci. 2006;95:499–516. doi:10.1002/jps.20578. [PubMed] [CrossRef] [Google Scholar]

128. Almarsson O., Zaworotko M.J. Crystal engineering of the composition of pharmaceutical phases. Do pharmaceutical co-crystals represent a new path to improved medicines? Chem. Commun. 2004:1889–1896. doi:10.1039/b402150a. [PubMed] [CrossRef] [Google Scholar]

129. Yadav A.V., Shete A.S., Dabke A.P., Kulkarni P.V., Sakhare S.S. Co-crystals: A novel approach to modify physicochemical properties of active pharmaceutical ingredients. Indian J. Pharm. Sci. 2009;71:359–370. doi:10.4103/0250-474X.57283. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

130. Karagianni A., Malamatari M., Kachrimanis K. Pharmaceutical Cocrystals: New Solid Phase Modification Approaches for the Formulation of APIs. Pharmaceutics. 2018;10:18. doi:10.3390/pharmaceutics10010018. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

131. Elbagerma M.A., Edwards H.G.M., Munshi T., Scowen I.J. Identification of a new cocrystal of citric acid and paracetamol of pharmaceutical relevance. Crystengcomm. 2011;13:1877–1884. doi:10.1039/C0CE00461H. [CrossRef] [Google Scholar]

132. Lin H.L., Hsu P.C., Lin S.Y. Theophylline-citric acid co-crystals easily induced by DCS-FTIR microspectrometry or different storage conditions. Asian J. Pharm. Sci. 2013;8:19–27. [Google Scholar]

133. Hsu P.C., Lin H.L., Wang S.L., Lin S.Y. Solid-state thermal behavior and stability studies of theophylline-citric acid cocrystals prepared by neat cogrinding or thermal treatment. J. Solid State Chem. 2012;192:238–245. doi:10.1016/j.jssc.2012.04.010. [CrossRef] [Google Scholar]

134. Tanaka R., Osotprasit S., Peerapattana J., Ashizawa K., Hattori Y., Otsuka M. Complete Cocrystal Formation during Resonant Acoustic Wet Granulation: Effect of Granulation Liquids. Pharmaceutics. 2021;13:56. doi:10.3390/pharmaceutics13010056. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

135. Karki S., Friscic T., Jones W., Motherwell W.D. Screening for pharmaceutical cocrystal hydrates via neat and liquid-assisted grinding. Mol. Pharm. 2007;4:347–354. doi:10.1021/mp0700054. [PubMed] [CrossRef] [Google Scholar]

136. Shimono K., Kadota K., Tozuka Y., Shimosaka A., Shirakawa Y., Hidaka J. Kinetics of co-crystal formation with caffeine and citric acid via liquid-assisted grinding analyzed using the distinct element method. Eur. J. Pharm. Sci. 2015;76:217–224. doi:10.1016/j.ejps.2015.05.017. [PubMed] [CrossRef] [Google Scholar]

137. Smit J.P., Hagen E.J. Polymorphism in Caffeine Citric Acid Cocrystals. J. Chem. Crystallogr. 2015;45:128–133. doi:10.1007/s10870-015-0573-3. [CrossRef] [Google Scholar]

138. Kavanagh O.N., Croker D.M., Walker G.M., Zaworotko M.J. Pharmaceutical cocrystals: From serendipity to design to application. Drug Discov. Today. 2019;24:796–804. doi:10.1016/j.drudis.2018.11.023. [PubMed] [CrossRef] [Google Scholar]

139. Jayasankar A., Roy L., Rodriguez-Hornedo N. Transformation pathways of cocrystal hydrates when coformer modulates water activity. J. Pharm. Sci. 2010;99:3977–3985. doi:10.1002/jps.22245. [PubMed] [CrossRef] [Google Scholar]

140. Lu Q., Dun J., Chen J.M., Liu S., Sun C.C. Improving solid-state properties of berberine chloride through forming a salt cocrystal with citric acid. Int. J. Pharm. 2019;554:14–20. doi:10.1016/j.ijpharm.2018.10.062. [PubMed] [CrossRef] [Google Scholar]

141. Deng J.H., Lu T.B., Sun C.C., Chen J.M. Dapagliflozin-citric acid cocrystal showing better solid state properties than dapagliflozin. Eur. J. Pharm. Sci. 2017;104:255–261. doi:10.1016/j.ejps.2017.04.008. [PubMed] [CrossRef] [Google Scholar]

142. Buol X., Robeyns K., Caro Garrido C., Tumanov N., Collard L., Wouters J., Leyssens T. Improving Nefiracetam Dissolution and Solubility Behavior Using a Cocrystallization Approach. Pharmaceutics. 2020;12:653. doi:10.3390/pharmaceutics12070653. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

143. Alhalaweh A., George S., Basavoju S., Childs S.L., Rizvi S.A.A., Velaga S.P. Pharmaceutical cocrystals of nitrofurantoin: Screening, characterization and crystal structure analysis. Crystengcomm. 2012;14:5078–5088. doi:10.1039/c2ce06602e. [CrossRef] [Google Scholar]

144. Teoh X.Y., Bt Mahyuddin F.N., Ahmad W., Chan S.Y. Formulation strategy of nitrofurantoin: Co-crystal or solid dispersion? Pharm. Dev. Technol. 2020;25:245–251. doi:10.1080/10837450.2019.1689401. [PubMed] [CrossRef] [Google Scholar]

145. Rehder S., Klukkert M., Lobmann K.A., Strachan C.J., Sakmann A., Gordon K., Rades T., Leopold C.S. Investigation of the Formation Process of Two Piracetam Cocrystals during Grinding. Pharmaceutics. 2011;3:706–722. doi:10.3390/pharmaceutics3040706. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

146. Cugovcan M., Jablan J., Lovric J., Cincic D., Galic N., Jug M. Biopharmaceutical characterization of praziquantel cocrystals and cyclodextrin complexes prepared by grinding. J. Pharm. Biomed. Anal. 2017;137:42–53. doi:10.1016/j.jpba.2017.01.025. [PubMed] [CrossRef] [Google Scholar]

147. Mukaida M., Watanabe Y., Sugano K., Terada K. Identification and physicochemical characterization of caffeine-citric acid co-crystal polymorphs. Eur. J. Pharm. Sci. 2015;79:61–66. doi:10.1016/j.ejps.2015.09.002. [PubMed] [CrossRef] [Google Scholar]

148. Holan J., Stepanek F., Billot P., Ridvan L. The construction, prediction and measurement of co-crystal ternary phase diagrams as a tool for solvent selection. Eur. J. Pharm. Sci. 2014;63:124–131. doi:10.1016/j.ejps.2014.06.017. [PubMed] [CrossRef] [Google Scholar]

149. Holan J., Ridvan L., Billot P., Stepanek F. Design of co-crystallization processes with regard to particle size distribution. Chem. Eng. Sci. 2015;128:36–43. doi:10.1016/j.ces.2015.01.045. [CrossRef] [Google Scholar]

150. Pekar K.B., Lefton J.B., MCConville C.A., Burleson J., Sethio D., Kraka E., Runcenvski T. Mechanosynthesis of a Coamorphous Formulation of Creatine with Citric Acid and Humidity-Mediated Transformation into a Cocrystal. Growth Des. 2021;21:1297–1306. doi:10.1021/acs.cgd.0c01560. [CrossRef] [Google Scholar]

151. Yang Y.L., Lai T.W. Citric Acid in Drug Formulations Causes Pain by Potentiating Acid-Sensing Ion Channel 1. J. Neurosci. 2021;41:4596–4606. doi:10.1523/JNEUROSCI.2087-20.2021. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

152. Lin S.H., Steinhoff M., Ikoma A., Chang Y.C., Cheng Y.R., Chandra Kopparaju R., Ishii S., Sun W.H., Chen C.C. Involvement of TRPV1 and TDAG8 in Pruriception Associated with Noxious Acidosis. J. Invest. Dermatol. 2017;137:170–178. doi:10.1016/j.jid.2016.07.037. [PubMed] [CrossRef] [Google Scholar]

153. Laursen T., Hansen B., Fisker S. Pain perception after subcutaneous injections of media containing different buffers. Basic Clin. Pharmacol. Toxicol. 2006;98:218–221. doi:10.1111/j.1742-7843.2006.pto_271.x. [PubMed] [CrossRef] [Google Scholar]

154. Yoshida T., Otaki Y., Katsuyama N., Seki M., Kubota J. New adalimumab formulation associated with less injection site pain and improved motivation for treatment. Mod. Rheumatol. 2019;29:949–953. doi:10.1080/14397595.2018.1520426. [PubMed] [CrossRef] [Google Scholar]

155. Mauer L.J., Taylor L.S. Water-Solids Interactions: Deliquescence. Annu. Rev. Food Sci. Technol. 2010;1:41–63. doi:10.1146/annurev.food.080708.100915. [PubMed] [CrossRef] [Google Scholar]

156. Peng C.G., Chow A.H.L., Chan C.K. Hygroscopic study of glucose, citric acid, and sorbitol using an electrodynamic balance: Comparison with UNIFAC predictions. Aerosol Sci. Tech. 2001;35:753–758. doi:10.1080/02786820152546798. [CrossRef] [Google Scholar]

157. Salameh A.K., Mauer L.J., Taylor L.S. Deliquescence lowering in food ingredient mixtures. J. Food Sci. 2006;71:E10–E16. doi:10.1111/j.1365-2621.2006.tb12392.x. [CrossRef] [Google Scholar]

158. Salameh A.K., Taylor L.S. Role of deliquescence lowering in enhancing chemical reactivity in physical mixtures. J. Phys. Chem. B. 2006;110:10190–10196. doi:10.1021/jp0612376. [PubMed] [CrossRef] [Google Scholar]

159. Veith H., Zaeh M., Luebbert C., Rodriguez-Hornedo N., Sadowski G. Stability of Pharmaceutical Co-Crystals at Humid Conditions Can Be Predicted. Pharmaceutics. 2021;13:433. doi:10.3390/pharmaceutics13030433. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Citric Acid: A Multifunctional Pharmaceutical Excipient (2024)
Top Articles
Latest Posts
Article information

Author: Francesca Jacobs Ret

Last Updated:

Views: 6413

Rating: 4.8 / 5 (48 voted)

Reviews: 95% of readers found this page helpful

Author information

Name: Francesca Jacobs Ret

Birthday: 1996-12-09

Address: Apt. 141 1406 Mitch Summit, New Teganshire, UT 82655-0699

Phone: +2296092334654

Job: Technology Architect

Hobby: Snowboarding, Scouting, Foreign language learning, Dowsing, Baton twirling, Sculpting, Cabaret

Introduction: My name is Francesca Jacobs Ret, I am a innocent, super, beautiful, charming, lucky, gentle, clever person who loves writing and wants to share my knowledge and understanding with you.